

Test report number: 02-100-FSV20-Standardtest-2017-02-28-e

Date of issue: 2017-02-28

Date of test: 2017-02-27/28

Tester: Michael Benzin

Device under test: FS-V20

Test requirement: Clause 6 of IEC / EN 62561-3 (2012)

Number of pages including cover: 20

Test report no.: 02-100-FSV20-Standardtest-2017-02-28-e

1. Issued by

OBO BETTERMANN GmbH & Co. KG BET Testcenter für Blitzschutz, Elektrotechnik und Tragsysteme P. O. Box 1120 58694 Menden Germany

Phone: +49 2373 89 1600

Test location

OBO BETTERMANN GmbH & Co. KG Hüingser Ring 52 58710 Menden Germany

Test participant

Michael Benzin (Tester)

Device under test

Type: **FS-V20** Item no .: 5099 803

Technical data: The technical data are given in figure A.1 in annex A.

OBO BETTERMANN GmbH & Co. KG Manufacturer:

> Hüingser Ring 52 58710 Menden

Germany

Date of test specimen receipt: 2017-02-24

Test requirement

Clause 6 "Tests" of IEC 62561-3 (2012-02) and EN 62561-3 (2012-06) "Lightning protection system components (LPSC) - Part 3: Requirements for isolating spark gaps (ISG)"

Test report no.: 02-100-FSV20-Standardtest-2017-02-28-e

6. Test description

This test is a type test that is performed with 3 identical test specimens according to clause 6 "Tests" of IEC and EN 62561-3 (2012) "Lightning protection system components (LPSC) – Part 3: Requirements for isolating spark gaps (ISG)".

Clause 6.2.2.2 of IEC / EN 62561-3 (2012) is not applicable caused by the fact that a rated power frequency withstand voltage $U_{W\,AC}$ is not declared.

Clause 6.2.3 of IEC / EN 62561-3 (2012) is not applicable caused by the technology of DUT that consists of a voltage limiting component (MOV) in parallel to a voltage switching component (spark gap).

Clause 6.2.4 of IEC / EN 62561-3 (2012) is tested without conditioning according to Annex A of IEC / EN 62561-3 (2012) caused by the declared installation location indoor.

In addition to the lightning impulse current I_{imp} , a nominal discharge current I_n having the waveshape $8/20^1$ is declared. This value is tested during clause 6.2.4 of IEC / EN 62561-3 (2012) before the application of lightning impulse current, with one impulse of 0,5 I_n and I_n .

7. Test result

The lowest isolation resistance measured before the lightning current impulse application is 3500 M Ω and exceeds the required value of clause 6.2.1 of IEC / EN 62561-3 (2012) of 100 M Ω . The measured results are given in table C.1 in annex C.

During the DC withstand voltage test of clause 6.2.2.3 and clause 6.2.6 of IEC / EN 62561-3 (2012), DUT does not spark over or conduct a leakage current above 1 mA and no puncture appear on the enclosure. After this test, the housing shows no signs of cracks.

During the lightning current test of clause 6.2.4 of IEC / EN 62561-3 (2012), no puncture appear on the enclosure. After this test, the housing shows no signs of cracks. The measured parameters of the test current impulses are given in table C.4 in annex C.

The lowest isolation resistance measured after the lightning current impulse application is 140 M Ω and exceeds the required value of clause 6.2.5 of IEC / EN 62561-3 (2012) of 500 k Ω . The measured results are given in table C.2 in annex C. The oscillograms of the current impulses are given in annex D.

After the marking test of clause 6.3 of IEC / EN 62561-3 (2012), the marking of DUT is legible. The marking after this test is shown in the figures C.1, C.2 and C.3 in annex C.

The measured environmental conditions during the test are shown in table C.3 in annex C.

¹ The 8/20 current impulse definition of IEC 62475 (2010-09) "High-current test techniques – Definitions and requirements for test currents and measuring systems" is applied.

Date of issue: 2017-02-28

Test report no.: 02-100-FSV20-Standardtest-2017-02-28-e

8. Conclusion

The device under test "FS-V20" has passed the test of clause 6 "Tests" of IEC 62561-3 (2012-02) and EN 62561-3 (2012-06) "Lightning protection system components (LPSC) – Part 3: Requirements for isolating spark gaps (ISG)".

OBO BETTERMANN GmbH & Co. KG

i.V. Michael Benzin Head of Bat Testcenter A. Jörg Neumann
Test engineer BET Testcenter

Test report no.: 02-100-FSV20-Standardtest-2017-02-28-e

Annex A

Datasheet of device under test

Test report no.: 02-100-FSV20-Standardtest-2017-02-28-e

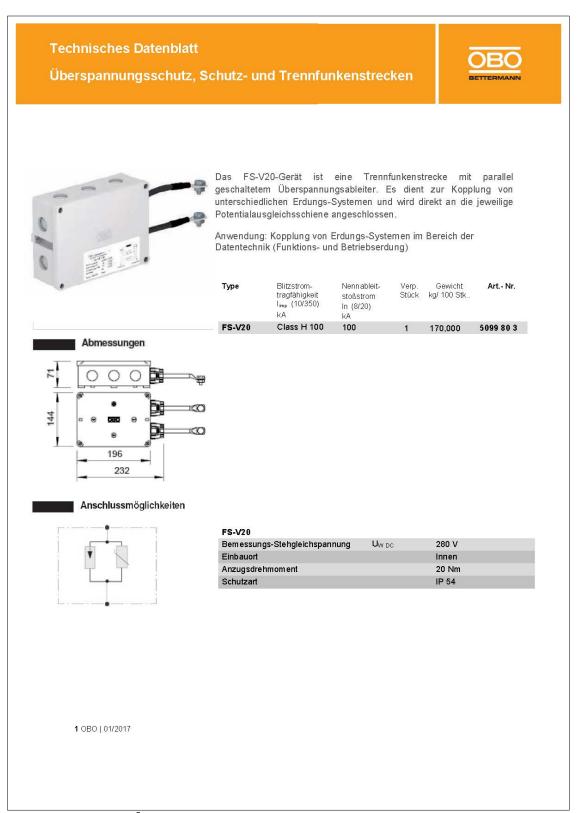


Figure A.1: Datasheet² of device under test "FS-V20"

Date of issue: 2017-02-28

² Taken from www.obo.de, version 01/2017

Test report no.: 02-100-FSV20-Standardtest-2017-02-28-e

Annex B

Used measuring instruments and test equipment

Test report no.: 02-100-FSV20-Standardtest-2017-02-28-e

B.1 DC power supply:

Manufacturer: Elektro-Automatik GmbH

Appellation: DC High efficiency power supply Type: PSI 81500-30 3U HS PV S01

 $\begin{array}{lll} Serial-no.: & 1190330001 \\ Maximum voltage: & 1,5 \ kV_{DC} \\ Maximum current: & 30 \ A_{DC} \\ Maximum power: & 15 \ kW \\ Frequency f: & DC \\ \end{array}$

B.2 Digital multimeter:

Manufacturer: Keysight 34410A Type: Serial-no.: MY47004368 P601027 Ident.-no.: Display: 6 1/2 Digits Sampling rate: 1000 s⁻⁷ Last calibration: 2016-12-27 Next calibration: 2018-12-27

B.3 AC/DC High voltage tester:

Manufacturer: ETL Prüftechnik

Appellation: AC/DC High voltage tester
Type: UX36-ADC-0608-0150-TPT

Serial-no.: 205056 1013 0020

 $\begin{array}{ll} \text{Ident.-no.:} & \text{P602011} \\ \text{Maximum voltage:} & \text{6 kV}_{\text{AC}} \, / \, 8 \, \text{kV}_{\text{DC}} \end{array}$

Maximum current: $150 \text{ mA}_{AC} / 100 \text{ mA}_{DC}$

Short circuit current: > 300 mA
Frequency f: 50 Hz / DC
Last calibration: 2015-04-28
Next calibration: 2017-04-27

B.4 Lightning current generator (LCG 1):

Kapazität C_{max} : 50 μF Ladespannung $U_{charge\ max}$: 100 kV Impulsstrom I_{max} : 200 kA

Wellenformen: 8/20 und 10/350

Test report no.: 02-100-FSV20-Standardtest-2017-02-28-e

B.5 Shunt of LCG 1:

Hersteller: Hilo Test GmbH, Stutensee

Typ: ISM 200P/0.4 spez

Serien-Nr.: 4203 P606006 Ident.-Nr.: Nennwiderstand R_N: $0.4 \text{ m}\Omega$ Genauigkeit: ±1% Impulsbelastbarkeit I_{max}: 200 kA 56•10⁶ A²s Grenzlastintegral: Bandbreite: 2 MHz Anstiegszeit T_a: 175 ns

Letzte Kalibrierung: 2015-01-16 Nächste Kalibrierung: 2018-01-15

B.6 Oscilloscope:

Manufacturer: Agilent
Type: DSO5014A
Serial-no: MY47260040
Ident.-no: P603008

Channels: 4

Bandwidth: 100 MHz
Sampling rate: 200 MSa/s
Last calibration: 2015-09-04
Next calibration: 2017-09-03

B.7 Thermohygrometer:

Manufacturer: Testo AG, Lenzkirch

Type: testo 608-H1 Ident.-no.: P505004 Serial-no.: 41301561

Measuring range: $0 \dots 50 \,^{\circ}\text{C} / 10 \dots 95 \,^{\circ}\text{H}$ Accuracy: $\pm 0.5 \,^{\circ}\text{C} / \pm 3 \,^{\circ}\text{H}$ (at 25 $^{\circ}\text{C}$)

Last calibration: 2016-09-08 Next calibration: 2018-09-08

B.8 Thermohygrometer:

Manufacturer: Testo AG, Lenzkirch

Type: testo 608-H1 Ident.-no.: P505005 Serial-no.: 34907880

Measuring range: $0 ... 50 \,^{\circ}\text{C} / 10 ... 95 \,^{\circ}\text{H}$ Accuracy: $\pm 0.5 \,^{\circ}\text{C} / \pm 3 \,^{\circ}\text{H}$ (at 25 $^{\circ}\text{C}$)

Last calibration: 2016-09-08 Next calibration: 2018-09-08

Test report no.: 02-100-FSV20-Standardtest-2017-02-28-e

B.9 Barometer:

Manufacturer: Greisinger electronic GmbH

Type: GPB 3300 Ident.-no.: P840021

Range: 300 - 1100 mbar Accuracy: ± 2 mbar (0 - 50 °C)

Last calibration: 2016-09-08 Next calibration: 2018-09-08

B.10 Barometer:

Manufacturer: Greisinger electronic GmbH

Type: GPB 3300 Ident.-no.: P840022

Range: 300 - 1100 mbar Accuracy: ± 2 mbar (0 - 50 °C)

Last calibration: 2016-09-08 Next calibration: 2018-09-08

Test report no.: 02-100-FSV20-Standardtest-2017-02-28-e

Annex C

Measured results

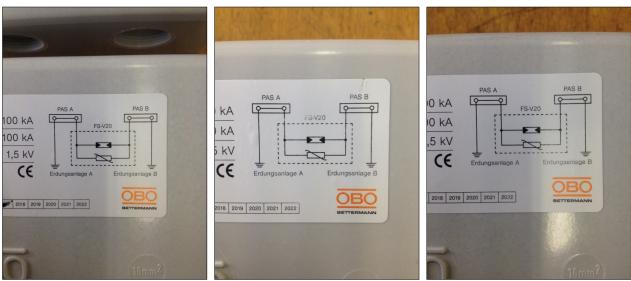


Figure C.1, C.2 and C.3: Test specimens after the marking test (Sample 1, 2 and 3 from left to right)

Sample	1	2	3
U	140 V	140 V	140 V
I	0,02 μΑ	0,04 μΑ	0,03 μΑ
R _{iso}	7000 MΩ	3500 MΩ	4667 MΩ

Table C.1: Measured isolation resistance before the lightning current impulse application

Sample	1	2	3
U	140 V	140 V	140 V
I	0,15 μΑ	0,40 μΑ	1,00 μΑ
R _{iso}	933 ΜΩ	350 ΜΩ	140 ΜΩ

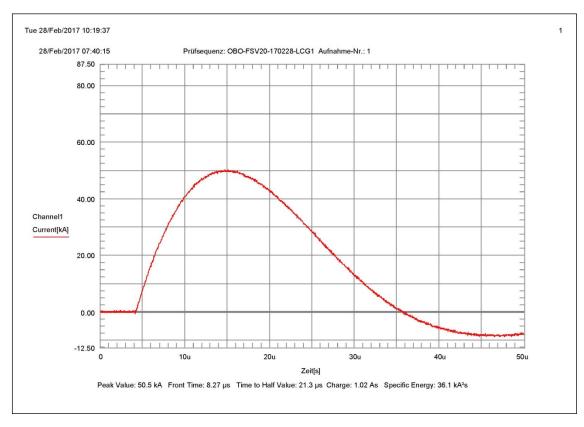
Table C.2: Measured isolation resistance after the lightning current impulse application

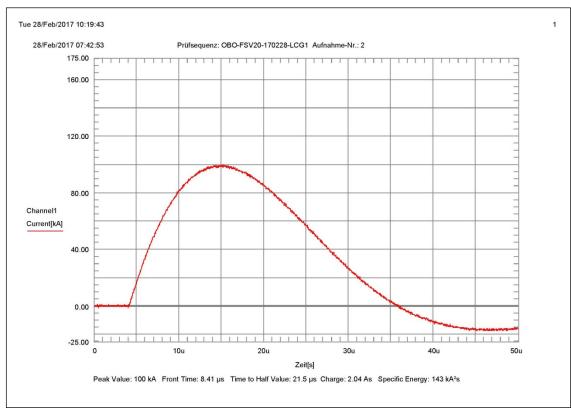
Parameter	Minimum	Maximum	Unit
Temperature	20,4	23,5	ပ္
Humidity	29,0	35,9	%
Barometric pressure	970,1	975,2	mbar

Table C.3: Environmental conditions during the test

Testname: O	Festname: OBO-FSV20-1702	70228-LCG1				Date: 28.02.2017 09:17:04	17 09:17:04
-				Channel1: Current	Current		
Sample	Counter	Peak Value	Front Time	Time To Half Value	Charge	Specific Energy	Duration
7	1	50.5 KA	8.27 µs	21.3 µs	1.02 As	36.1 kA²s	
_	2	100 KA	8.41 µs	21.5 µs	2.04 As	143 kA²s	
C	3	47.9 KA	8.35 µs	21.8 µs	967 mAs	33.3 kA²s	
7	4	100 KA	8.28 µs	21.4 µs	2.04 As	145 kA²s	
c	2	48.3 kA	8.42 µs	21.7 µs	971 mAs	33.6 kA ² s	
n	9	97.8 KA	8.59 µs	21.9 µs	1.99 As	138 kA²s	
1	7	49.9 kA	25.1 µs	502 µs	27.5 As	778 kA²s	1,38 ms
2	8	50.6 kA	25.0 µs	499 µs	27.6 As	798 kA²s	1,36 ms
3	6	49.8 kA	24.9 µs	489 µs	27 As	769 kA²s	1,32 ms
1	10	97.7 kA	19 µs	388 us	42.3 As	$2.25 \mathrm{MA}^2\mathrm{s}$	1,10 ms
2	11	100 kA	23 µs	381 µs	46.2 As	2.53 MA ² s	1,16 ms
3	12	99.5 kA	18.9 µs	404 µs	43.3 As	2.37 MA²s	1,06 ms

Table C.4: Measured parameters of the current impulses


Test report no.: 02-100-FSV20-Standardtest-2017-02-28-e


Annex D

Oscillograms of current impulses

