

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-99/0010 of 23 July 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Wedge anchor BZ plus and BZ-IG

Torque controlled expansion fastener for use in concrete

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

36 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

ETA-99/0010 issued on 6 April 2016

European Technical Assessment ETA-99/0010

Page 2 of 36 | 23 July 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z43586.18 8.06.01-561/18

European Technical Assessment ETA-99/0010

Page 3 of 36 | 23 July 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Wedge anchor BZ plus and BZ-IG is an fastener made of zinc plated steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following fastener types are covered:

- Fastener type BZ plus with external thread, washer and hexagon nut, sizes M8 to M27,
- Fastener type BZ-IG S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12,
- Fastener type BZ-IG SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Fastener type BZ-IG B with internal thread, hexagon nut and washer MU-IG, sizes M6 to M12

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for static and quasi static action	for BZ plus see Annex C1 to C5 for BZ-IG see Annex C11 to C13
Displacements	for BZ plus see Annex C9 to C10 for BZ-IG see Annex C15
Characteristic values for seismic performance categories C1 and C2	for BZ plus see Annex C6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	for BZ plus see Annex C7 and C8 for BZ-IG see Annex C14

Z43586.18 8.06.01-561/18

European Technical Assessment ETA-99/0010

Page 4 of 36 | 23 July 2018

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

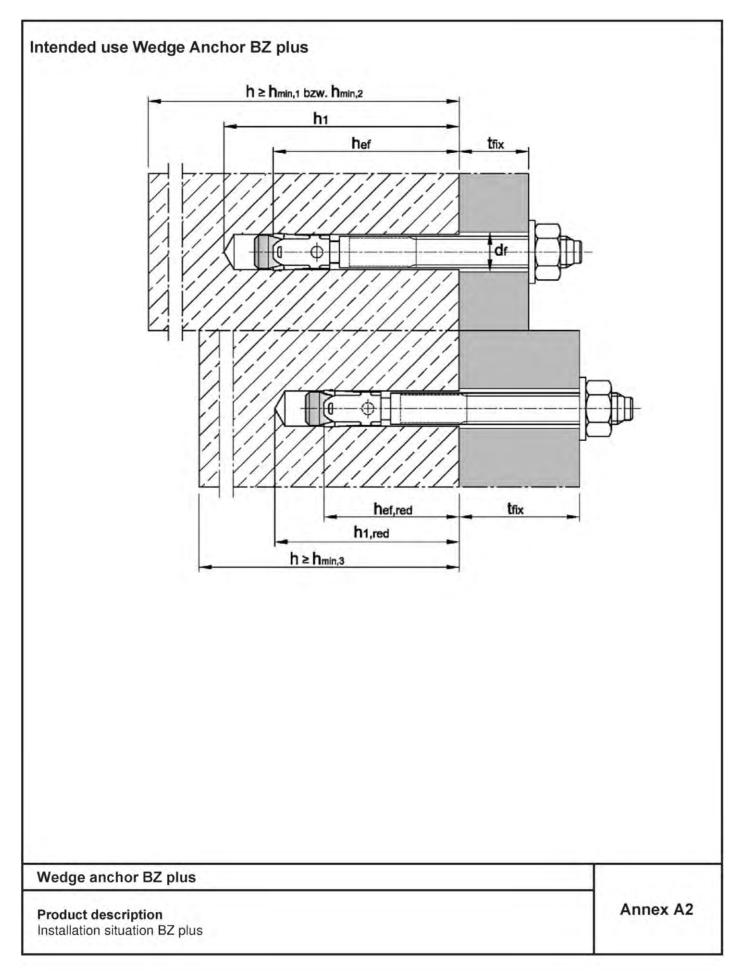
In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 23 July 2018 by Deutsches Institut für Bautechnik


Dr.-Ing. Lars Eckfeldt beglaubigt:
p. p. Head of Department Lange

Z43586.18 8.06.01-561/18

Fastener version	Product description	Intended use	Performance
BZ plus	Annex A1 - Annex A4	Annex B1 – Annex B7	Annex C1 – Annex C10
BZ-IG	Annex A1 Annex A5 – Annex A7	Anhang B1 – Anhang B2 Anhang B8 – Anhang B10	Anhang C11 – Anhang C15
Vedge anchor BZ	plus		
Conical bolt —	Expansion sleeve	Washer — He	exagon nut
			M8 to M20
			M8 to M20
			M24 to M27 (M27 zinc plated only)
Vedge anchor BZ astener system	-IG M6 to M12		
BZ-IG S		Washer	Hexagon head screw
BZ-IG SK	onical bolt	Countersunk washer	Countersunk head screw
	Expansion sleeve	Washer Hexagon nut	Commerical standard rod
BZ-IG B			

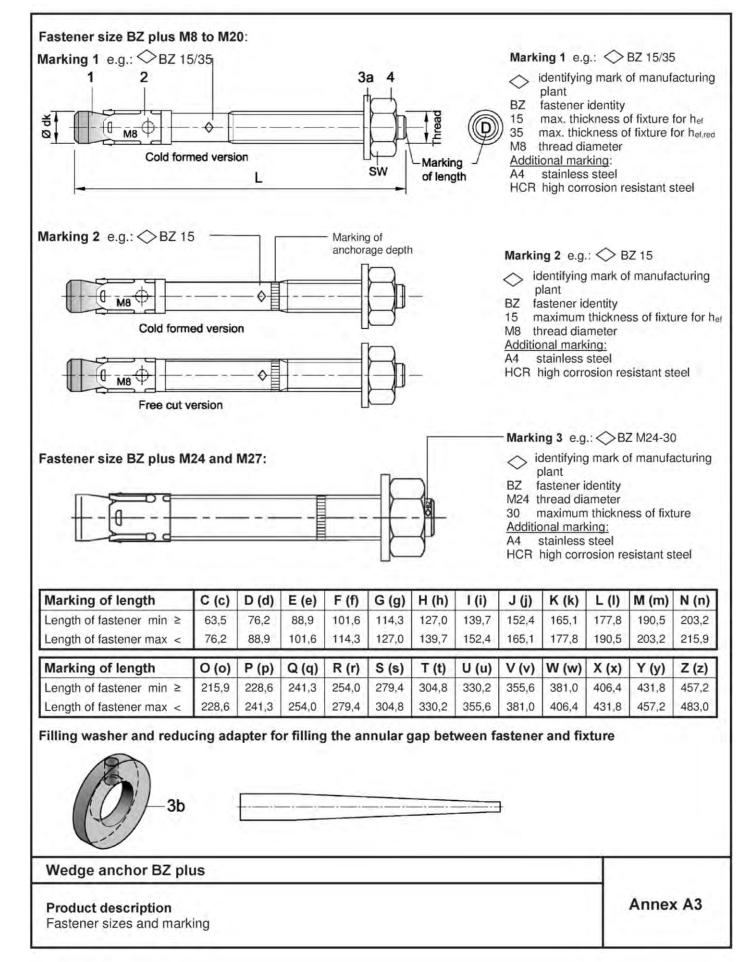


Table A1: Fastener dimensions BZ plus

Fastener siz	te		M8	M10	M12	M16	M20	M24	M27
Conical bolt		Thread M	M8	M10	M10 M12	M16	M20	M24	M27
		Ø d _k =	7,9	9,8	12,0	15,7	19,7	24	28
Length of	Steel, zinc plated	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	161+t _{fix}	178+t _{fix}
	A4, HCR	L	65 + t _{fix}	80 + tfix	96,5+tfix	118+tfix	137+tfix	168+t _{fix}	10.00
fastener1)	reduced anchorage depth	Lhef.red	54 + t _{fix}	60 + t _{fix}	76,5+t _{fix}	98+t _{fix}	9		10-01
Hexagon nut		SW	13	17	19	24	30	36	41

¹⁾ With additional use of filling washer 3b the usable thickness of fixture will reduce 5mm

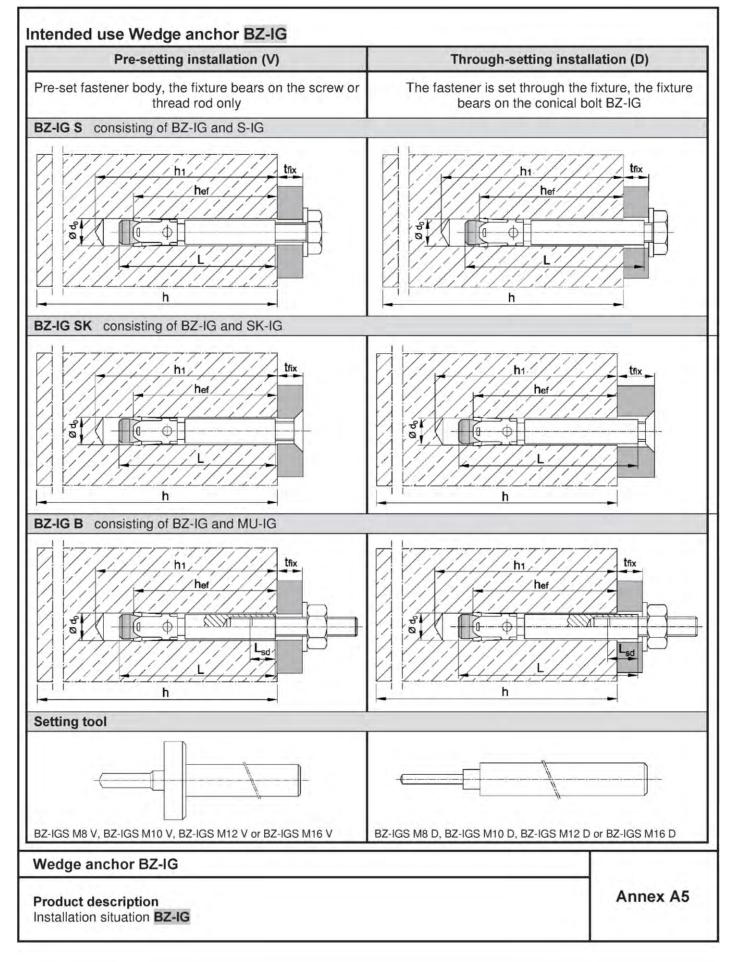

Dimensions in mm

Table A2: Materials BZ plus

		BZ	2 plus	BZ plus A4	BZ plus HCR	
No.	Part	Steel, z	inc plated	Stainless steel	High corrosion	
		galvanized ≥ 5µm	sherardized ≥ 40µm	A4	resistant steel (HCR)	
1	Conical bolt	M8 to M20: Cold formed or machined steel, galvanized, cone plastic coated	M8 to M20: Cold formed or machined steel, sherardized, cone plastic coated	M8 to M20: Stainless steel (e.g. 1.4401, 1.4404, 1.4578, 1.4571) EN 10088:2014, cone plastic coated	M8 to M20: High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, cone plastic coated	
	Threaded bolt	M24 and M27:	M24 and M27: steel, sherardized	M24: Stainless steel	M24: High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014	
	Threaded cone	Steel, galvanized	M24 and M27: Steel, galvanized	(e.g. 1.4401, 1.4404) EN 10088:2014		
2	Expansion sleeve	M8 to M20: Steel (e.g. 1.4301 or 1.4401) EN 10088:2014, M24 and M27: Steel acc. to EN 10139:1997	M8 to M20: Steel (e.g. 1.4301 or 1.4401) EN 10088:2014, M24 and M27: Steel acc. to EN 10139:1997	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014	
3a Washer 3b Filling washer				Stainless steel (e.g. 1.4401,	High corrosion resistant steel 1.4529	
			Steel, zinc plated	1.4571) EN 10088:2014	or 1.4565, EN 10088:2014	
4	Hexagon nut	Steel, galvanized, coated	Steel, zinc plated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, coated	

Wedge anchor BZ plus	
Product description Dimensions and materials	Annex A4

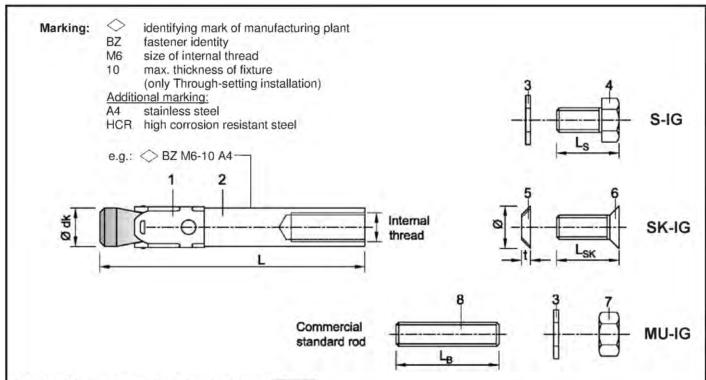


Table A3: Fastener dimensions BZ-IG

No.	Fastener size		M6	M8	M10	M12
,	Conical bolt with internal thread	Ø dk	7,9	9,8	11,8	15,7
1	Pre-setting installation		50	62	70	86
	Through-setting installation	- L	$50 + t_{fix}$	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Expansion sleeve			see ta	able A4	
3	Washer			see ta	able A4	
	Hexagon head screw wid	10	13	17	19	
4	Pre-setting installation	Ls	tfix + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)
	Through-setting installation Ls		14 to 20	18 to 22	20 to 22	25 to 28
5	Countersunk Ø countersunk washer t		17,3	21,5	25,9	30,9
5			3,9	5,0	5,7	6,7
6	Countersunk head screw	bit size	Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socke 8 mm
	Pre-setting installation Lsk Through-setting installation Lsk		t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)
			16 to 20	20 to 25	25	30
7	Hexagon nut width ac	ross flats	10	13	17	19
8	Commercial type V	L _B ≥	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41
8	standard rod1) type D	L _B ≥	21	28	34	41

¹⁾ acc. to specifications (Table A4)

Dimensions in mm

Wedge anchor BZ-IG	J
--------------------	---

Product description

Fastener parts, marking and dimensions BZ-IG

Annex A6

Table A4: Materials BZ-IG

		BZ-IG	BZ-IG A4	BZ-IG HCR		
No. Part		Steel, galvanized ≥ 5 µm acc. to EN ISO 4042:1999	Stainless steel A4	High corrosion resistant steel HCR		
Conical bolt BZ-IG Machined steel, Cone plastic coated		Stainless steel (e.g. 1.4401, 1.4404, 1.4571, 1.4362) EN 10088:2014, Cone plastic coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, Cone plastic coated			
2	Expansion sleeve BZ-IG	Stainless steel (e.g. 1.4301, 1.4401) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014		
3	Washer S-IG / MU-IG	Steel, galvanized	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014		
4	Hexagon head screw S-IG	Steel, galvanized, coated Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated		High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated		
5	Countersunk washer SK-IG	her Steel, galvanized Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014, zinc plated, coated		High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, zinc plated, coated		
6	Countersunk head screw SK-IG	Steel, galvanized coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated		
7	Hexagon nut MU-IG	Steel, galvanized coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated		
8	Commercial standard rod	Property class 8.8, EN ISO 898-1:2013 A ₅ > 8 % ductile	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, property class 70, EN ISO 3506:2009	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, property class 70, EN ISO 3506:2009		

Wedge anchor BZ-IG	
Product description	Annex A7
Materials BZ-IG	

Specifications of intended use

Wedge Anchor BZ plus							
Standard anchorage depth	M8	M10	M12	M16	M20	M24	M27
Steel, galvanized				1			
Steel, sherardized				1			
Stainless steel A4 and high corrosion resistant steel HCR		✓					-
Static or quasi-static action	✓						
Fire exposure				1			
Seismic action (C1 and C2) 1)			V	7			-
Reduced anchorage depth 1)	M8	M10	M12	M16			
Steel, galvanized			V		1		
Steel, sherardized		0.00	V		1		
Stainless steel A4 and high corrosion resistant steel HCR		1.17	√				

1

Static or quasi-static action

Seismic action (C1 and C2)

Fire exposure

Wedge Anchor BZ-IG	M6	M8	M10	M12
Steel, galvanized	V			
Stainless steel A4 and high corrosion resistant steel HCR	V -			
Static or quasi-static action	·			
Fire exposure	·			
Seismic action (C1 and C2)			-	

Base materials:

- . Compacted, reinforced or unreinforced normal weight concrete (without fibers) according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013
- · Cracked or uncracked concrete

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (steel zinc plated, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

Wedge Anchor BZ plus and BZ-IG	
Intended use	Annex B1
Specifications	

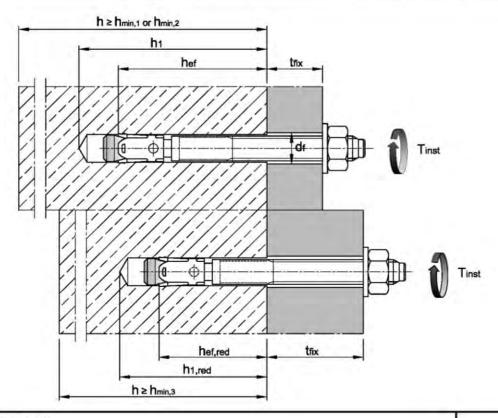
¹⁾ only cold formed anchors acc. to Annex A3

Specifications of intended use

Design:

- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to
 supports, etc.).
- Dimensioning of fasteners under static or quasi-static action, seismic action or fire exposure according to FprEN 1992-4: 2016 in conjunction with TR 055

Installation:


- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- . Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Optionally, the annular gap between fixture and stud of the BZ plus can be filled to reduce the hole. For this
 purpose, the filling washer (3b) must be used in addition to the supplied washer (3a). For filling use high-strength
 mortar with compressive strength ≥ 50N/mm² (VMZ, VMU plus or VMH)
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

Wedge Anchor BZ plus and BZ-IG	
Intended use	Annex B2
Specifications	

Table B1: Installation parameters, BZ plus

Fastener siz	ze			M8	M10	M12	M16	M20	M24	M27
Nominal drill	hole diameter	d ₀	[mm]	8	10	12	16	20	24	28
Cutting diame	eter of drill bit	d _{cut} ≤	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
Installation torque	Steel, galvanized	Tinst	[Nm]	20	25	45	90	160	200	300
	Steel, sherardized	Tinst	[Nm]	16	22	40	90	160	260	300
	Stainless steel A4, HCR	Tinst	[Nm]	20	35	50	110	200	290	9 (-)
Diameter of clearance		$d_f \leq$	[mm]	9	12	14	18	22	26	30
Standard an	chorage depth									
Depth of	Steel, zinc plated	h₁ ≥	[mm]	60	75	90	110	125	145	160
drill hole	Stainless steel A4, HCR	h₁ ≥	[mm]	60	75	90	110	125	155	1 1-
Effective	Steel, zinc plated	hef	[mm]	46	60	70	85	100	115	125
anchorage depth	Stainless steel A4, HCR	het	[mm]	46	60	70	85	100	125	1 64
Reduced and	chorage depth									
Depth of drill	hole	h _{1,red} ≥	[mm]	49	55	70	90			
Reduced effe depth	ective anchorage	h _{ef,red}	[mm]	35	40	50	65	1,-	-	14,5

Wedge anchor BZ plus

Intended use Installation parameters

Table B2:	Minimum spacing	s and edge distances	, standard anchorage	depth, BZ plus
-----------	-----------------	----------------------	----------------------	----------------

Fastener size			M8	M10	M12	M16	M20	M24	M27
Standard thickness of concret	e member								
Steel zinc plated									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	170	200	230	250
Cracked concrete									
Minimum spacing	Smin	[mm]	40	45	60	60	95	100	125
Willimann spacing	für c ≥	[mm]	70	70	100	100	150	180	300
Minimum edge distance	Cmin	[mm]	40	45	60	60	95	100	180
	für s ≥	[mm]	80	90	140	180	200	220	540
Uncracked concrete									
Minimum spacing	Smin	[mm]	40	45	60	65	90	100	125
	für c ≥	[mm]	80	70	120	120	180	180	300
Minimum edge distance	Cmin	[mm]	50	50	75	80	130	100	180
	für s ≥	[mm]	100	100	150	150	240	220	540
Stainless steel A4, HCR									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	160	200	250	
Cracked concrete									
Minimum spacing	Smin	[mm]	40	50	60	60	95	125	
	fürc≥	[mm]	70	75	100	100	150	125	
Minimum edge distance	Cmin	[mm]	40	55	60	60	95	125	
	fürs≥	[mm]	80	90	140	180	200	125	
Uncracked concrete			- 72	1		1 22			
Minimum spacing	Smin	[mm]	40	50	60	65	90	125	
	für c ≥	[mm]	80	75	120	120	180	125	1 (21
Minimum edge distance	Cmin	[mm]	50	60	75	80	130	125	
Williman eage distance	für s ≥	[mm]	100	120	150	150	240	125	
Minimum thickness of concret	11 - 11 - 12 - 12 - 12 - 12 - 12								
Steel zinc plated, stainless ste	el A4, HC	R							
Minimum thickness of member	h _{min,2}	[mm]	80	100	120	140	-		100
Cracked concrete									
Minimum spacing	Smin	[mm]	40	45	60	70			1
within apacing	fürc≥	[mm]	70	90	100	160	-		-
Minimum edge distance	Cmin	[mm]	40	50	60	80			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	fürs≥	[mm]	80	115	140	180			
Uncracked concrete									
Minimum spacing	Smin	[mm]	40	60	60	80			
Taminion Spacing	für c ≥	[mm]	80	140	120	180			1025
Minimum edge distance	Cmin	[mm]	50	90	75	90			
willimum edge distance	fürs≥	[mm]	100	140	150	200			1 =

Fire exposure from one side			
Minimum spacing	Smin,fi	[mm]	See normal ambient temperature
Minimum edge distance	Cmin,fi	[mm]	See normal ambient temperature
Fire exposure from more tha	an one side		
Minimum spacing	Smin,fi	[mm]	See normal ambient temperature
Minimum edge distance	Cmin,fi	[mm]	≥ 300 mm

Intermediate values by linear interpolation.

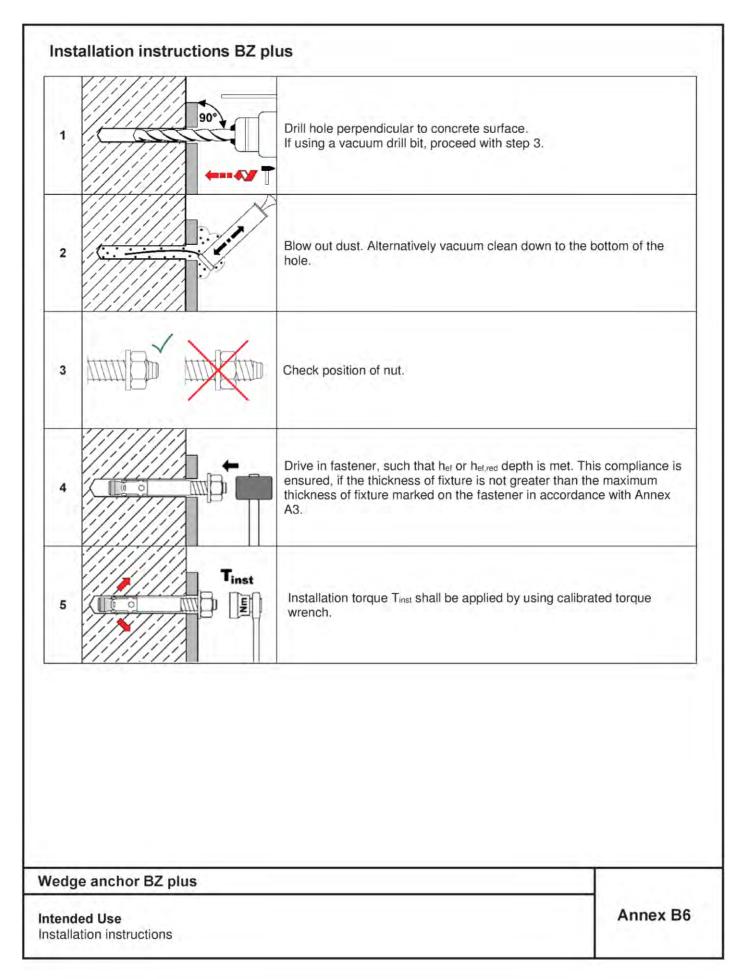
Wedge anchor BZ plus

Intended use

Minimum spacings and edge distances for standard anchorage depth

Table B3: Minimum spacings and edge distances, reduced anchorage depth, BZ plus

Fastener size			M8	M10	M12	M16
Minimum thickness of concrete member	h _{min,3}	[mm]	80	80	100	140
Cracked concrete						
Minimum anadias	Smin	[mm]	50	50	50	65
Minimum spacing	für c ≥	[mm]	60	100	160	170
Minimum edge distance	Cmin	[mm]	40	65	65	100
Williman edge distance	fürs≥	[mm]	185	180	250	250
Uncracked concrete						
Minimum spacing	Smin	[mm]	50	50	50	65
	für c≥	[mm]	60	100	160	170
Minimum edge distance	Cmin	[mm]	40 65 100			170
Willimum edge distance	fürs≥	[mm]	185	180	185	65
Fire exposure from one side						
Minimum spacing	Smin,fi	[mm]	5	See normal amb	ient temperatur	'e
Minimum edge distance	Cmin,fi	[mm]	5	See normal amb	ient temperatur	re
Fire exposure from more than one side)					
Minimum spacing	Smin,Fi	[mm]	5	See normal amb	ient temperatur	re
Minimum edge distance	Cmin,fi	[mm]		≥ 300	0 mm	


Intermediate values by linear interpolation.

Wedge anchor BZ plus

Intended use

Minimum spacings and edge distances for reduced anchorage depth

1	90°	Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3a.
2		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
3a		Check position of nut.
3b		Fit the filling washer to the fastener. The thickness of the filling washer must be taken into account with t _{fix} .
4		Drive in fastener with filling washer, such that het or het,red depth is met. This compliance is ensured, if the thickness of fixture is 5mm smaller than the maximum thickness of fixture marked on the fastener in accordance with Annex A3.
5	Tinst	
6		Fill the annular gap between stud and fixture with mortar (compressive strength ≥ 50 N/mm² VMH, VMZ or VMU plus). Use enclosed reducing adapter. Observe the processing information of the mortar! The annular gap is completely filled, when excess mortar seeps out.

Wedge anchor BZ plus	
Intended Use Installation instructions with filling washer	Annex B7

Table B4: Installation parameters BZ-IG

Fastener size				M6	M8	M10	M12
Effective anchorage depth		hef	[mm]	45	58	65	80
Drill hole diameter		do	[mm]	8	10	12	16
Cutting diameter of drill bit		d _{cut} ≤	[mm]	8,45	10,45	12,5	16,5
Depth of drill hole		h₁≥	[mm]	60	75	90	105
Screwing depth of threaded rod		$L_{sd}^{(2)} \geq$	[mm]	9	12	15	18
UP C Z A C P C P C		S	[Nm]	10	30	30	55
Installation torque, steel zinc plated	Tinst	SK	[Nm]	10	25	40	50
Steel Zilic piated		В	[Nm]	8	25	30	45
Installation torque, stainless steel A4, HCR		S	[Nm]	15	40	50	100
	Tinst	SK	[Nm]	12	25	45	60
stailless steel A4, HGN		В	[Nm]	8	25	40	80
Pre-setting installation							
Diameter of clearance hole in the fixture		d₁≤	[mm]	7	9	12	14
		S	[mm]	1	1 1	1	1
Minimum thickness of fixture	t _{fix} ≥	SK	[mm]	5	7	8	9
	to the same of	В	[mm]	1	1	1	1
Through-setting installation							
Diameter of clearance hole in the fixture		d₁≤	[mm]	9	12	14	18
		S	[mm	5	7	8	9
Minimum thickness of fixture 1)	t _{fix} ≥	SK	[mm]	9	12	14	16
	0.5.4	В	[mm]	5	7	8	9

¹⁾ The minimum thickness of fixture can be reduced to the value of Pre-setting installation, if the shear load at steel failure is designed with lever arm.

Table B5: Minimum spacings and edge distances BZ-IG

Fastener size			M6	M8	M10	M12
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160
Cracked concrete						
Minimum angaing	Smin	[mm]	50	60	70	80
inimum spacing inimum edge distance ncracked concrete inimum spacing inimum spacing inimum edge distance ire exposure from one side inimum spacing	für c ≥	[mm]	60	80	100	120
finimum spacing finimum edge distance fincracked concrete finimum spacing finimum edge distance fire exposure from one side	Cmin	[mm]	50	60	70	80
Millimum eage distance	fürs≥	[mm]	75	100	100	120
Uncracked concrete						
Minimum spacing	Smin	[mm]	50	60	65	80
	fürc≥	[mm]	80	100	120	160
Minimum adas distanse	Cmin	[mm]	50	60	70	100
Minimum edge distance	fürs≥	[mm]	115	155	170	210
Fire exposure from one side						
Minimum spacing	Smin.li	[mm]		See normal	temperature	
Minimum edge distance	Cmin.fi	[mm]		See normal	temperature	
Fire exposure from more than one side						
Minimum spacing	Smin,fi	[mm]		See normal	temperature	
Minimum edge distance	Cmin,fi	[mm]		≥ 30	0 mm	

Wedge anchor BZ-IG

Intended use

Installation parameters, minimum spacings and edge distances BZ-IG

²⁾ see Annex A5

Installation instructions BZ-IG Pre-setting installation Drill hole perpendicular to concrete surface. If using vacuum drill bit, proceed with step 3. 2 Blow out dust. Alternatively vacuum clean down to the bottom of the hole. 3 Setting tool for pre-setting installation insert in fastener. Drive in fastener with setting tool. Drive in srew. Installation torque T_{inst} may be applied by using calibrated torque wrench. Wedge anchor BZ-IG Annex B9 Intended Use Installation instructions for pre-setting installation BZ-IG

Installation instructions BZ-IG Through-setting installation Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3. 2 Blow out dust. Alternatively vacuum clean down to the bottom of the hole. 3 BZ-IGS Setting tool for through-setting installation insert in fastener. BZ-IGS Drive in fastener with setting tool. Drive in screw. T_{inst} EN. Installation torque Tinst may be applied by using calibrated torque wrench. Wedge anchor BZ-IG Annex B10 Intended Use Installation instructions for through-setting installation BZ-IG

Table C1: Characteristic values for tension loads, BZ plus zinc plated, cracked concrete, static and quasi-static action

Fastener size		M8	M10	M12	M16	M20	M24	M27
Installation factor yinst	[-]				1,0			
Steel failure								
Characteristic resistance N _{Rk,s}	[kN]	16	27	40	60	86	126	196
Partial factor yms	[-]	1,	53	1	,5	1,6	1	,5
Pull-out								
Standard anchorage depth								
Characteristic resistance in cracked concrete C20/25 NRk,p	[kN]	5	9	16	25	3)	1)	1)
Reduced anchorage depth								
Characteristic resistance in cracked concrete C20/25	[kN]	5	7,5	1).	1)	4	-	121
Increasing factor for $N_{RK,p}$ ψc	[-]				$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Concrete cone failure								,
Effective anchorage depth her	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth hef,red	[mm]	35 ²⁾	40	50	65		-	-
Factor for cracked concrete $k_1 = k_{cr,N}$	[-]				7,7			

¹⁾ Pull-out is not decisive

Wedge anchor BZ plus

Performance

Characteristic values for tension loads, BZ plus zinc plated, cracked concrete, static and quasi-static action

²⁾ Use restricted to anchoring of structural components statically indeterminate

Table C2: Characteristic values for tension loads, BZ plus A4 / HCR, cracked concrete, static and quasi-static action

Fastener size			M8	M10	M12	M16	M20	M24
Installation factor	Yinst	[-]				1,0	•	
Steel failure								
Characteristic resistance	N _{Rk,s}	[kN]	16	27	40	64	108	110
Partial factor	γMs	[-]		1	,5		1,68	1,5
Pull-out								
Standard anchorage depth								
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	40
Reduced anchorage depth								
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	5	7,5	1)	1)		
Increasing factor for N _{RK,p}	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$					
Concrete cone failure								
Effective anchorage depth	her	[mm]	46	60	70	85	100	125
Reduced anchorage depth	hel,red	[mm]	35 ²⁾	40	50	65	1 - 1	7
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]			7	7,7		

Pull-out is not decisive

Wedge anchor BZ plus

Performance

Characteristic values for tension loads, BZ plus A4 / HCR, cracked concrete, static and quasi-static action

²⁾ Use restricted to anchoring of structural components statically indeterminate

Table C3: Characteristic values for tension loads, BZ plus zinc plated, uncracked concrete, static and quasi-static action

Fastener size			M8	M10	M12	M16	M20	M24	M27
Installation factor	Yinst	[-]				1,0			
Steel failure									
Characteristic resistance	N _{Rk,s}	[kN]	16	27	40	60	86	126	196
Partial factor	γMs	[-]	1,	53	1	,5	1,6	1	,5
Pull-out									
Standard anchorage depth									
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	12	16	25	35	1)	1)	1)
Reduced anchorage depth									
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	7,5	9	1)	1)-	0.01	75	3.
Splitting									
Standard anchorage depth Splitting for standard thickness of conc							se 2 may b	e applied;	
c _{cr,sp} may be linearly interpolated for the memb				_		T			
	in,t≥	[mm]	100	120	140	170	200	230	250
Case 1		-			r		r		
uncracked concrete G20/25	O _{Rk,sp}	[kN]	9	12	20	30	40	62,3	50
Edge distance	Ccr,sp	[mm]	mm] 1,5 h _{ef}						
Case 2									
Characteristic resistance in uncracked concrete C20/25	0 Rk,sp	[kN]	12	16	25	35	50,5	62,3	70,6
Edge distance	C _{cr,sp}	[mm]		2	hef		2,2 hef	1,5 het	2,5 he
Splitting for minimum thickness of cond	crete	membe	er						
Minimum thickness of concrete h _m	in,2≥	[mm]	80	100	120	140			
Characteristic resistance in uncracked concrete C20/25	⁰ Rk,sp	[kN]	12	16	25	35	19.1	1.5	CZ.
Edge distance	C _{cr,sp}	[mm]		2,5	hef				
Reduced anchorage depth									
Minimum thickness of concrete h _m	in,3≥	[mm]	80	80	100	140			
Characteristic resistance in uncracked concrete C20/25	⁰ Rk,sp	[kN]	7,5	9	17,9	26,5	-	-	1,4.
Edge distance	Ccr,sp	[mm]	100	100	125	150			
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψс	[-]				$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Concrete cone failure									
Effective anchorage depth	hef	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth		[mm]	35 ²⁾	40	50	65			73.7
	Kucr,N	[-]		-		11,0			

¹⁾ Pull-out is not decisive

Wedge anchor BZ plus

Performance

Characteristic values for tension loads, BZ plus zinc plated, uncracked concrete, static and quasi-static action

²⁾ Use restricted to anchoring of structural components statically indeterminate

Table C4:	Characteristic values for tension loads, BZ plus A4 / HCR,
	uncracked concrete, static and quasi-static action

Fastener size			M8	M10	M12	M16	M20	M24
Installation factor	Yinst	[-]			1	,0		
Steel failure								
Characteristic resistance	N _{Rk,s}	[kN]	16	27	40	64	108	110
Partial factor	γMs	[-]		1,	5		1,68	1,5
Pull-out								
Standard anchorage depth								
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	12	16	25	35	1)	7)
Reduced anchorage depth								
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	7,5	9	1)	1)	lie_	
Splitting								
Standard anchorage depth								
Splitting for standard thickness of c _{cr,sp} may be linearly interpolated for the						case 2 may	be applied;	
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	160	200	250
Case 1								
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	9	12	20	30	40	181
Edge distance	C _{cr,sp}	[mm]	1,5 her					
Case 2								
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	50,5	70,6
Edge distance	C _{cr,sp}	[mm]	115	125	140	200	220	250
Splitting for minimum thickness of	concrete me	mber						
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140		
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35		20
Edge distance	C _{cr,sp}	[mm]		2,5	hei			
Reduced anchorage depth								
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140		
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	7,5	9	17,9	26,5	dig to	ų,
Edge distance	Ccr,sp	[mm]	100	100	125	150		
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,5		
Concrete cone failure								
Effective anchorage depth	her	[mm]	46	60	70	85	100	125
Reduced anchorage depth	herred	[mm]	35 ²⁾	40	50	65	-	-
Factor for uncracked concrete	$k_1 = k_{uct,N}$	[-]			- 11	,0		

¹⁾ Pull-out is not decisive

Wedge anchor BZ plus

Performance

Characteristic values for tension loads, BZ plus A4 / HCR, uncracked concrete, static and quasi-static action

²⁾ Use restricted to anchoring of structural components statically indeterminate

Table C5: Characteristic values for shear loads, BZ plus, cracked and uncracked concrete, static or quasi static action

Fastener size				M8	M10	M12	M16	M20	M24	M27
Installation factor Yinst			[-]				1,0		_	
Steel failure withou	ut lever arm, Steel zi	nc pla	ted							
Characteristic resist	ance	$V^0_{\text{Rk,s}}$	[kN]	12,2	20,1	30	55	69	114	169,4
Ductility factor		k ₇	[-]				1,0			
Partial factor		γMs	[-]		1.	25		1,33	1,25	1,25
Steel failure withou	ut lever arm, Stainles	ss stee	el A4, H	CR						
Characteristic resist	ance	$V^0_{\text{Rk},s}$	[kN]	13	20	30	55	86	123,6	
Ductility factor		k ₇	H				1,0			-
Partial factor yms		[-]		= 1,	25		1,4	1,25		
Steel failure with le	ever arm, Steel zinc	plated								
Characteristic bend	ing resistance	$M^0_{Rk,s}$	[Nm]	23	47	82	216	363	898	1331,5
Partial factor YMs		[-]		1,	25		1,33	1,25	1,25	
Steel failure with le	ever arm, Stainless s	steel A	4, HCR			-				
Characteristic bend	ing resistance	M ⁰ Rk,s	[Nm]	26	52	92	200	454	785,4	1
Partial factor		γMs	[-]	1,25				1,4	1,25	1 1 5
Concrete pry-out f	ailure									
Pry-out factor		k ₈	[-]	2,4			1		2,8	
Concrete edge fail	ure									
Effective length of	Steel zinc plated	Je	[mm]	46	60	70	85	100	115	125
fastener in shear loading with h ef	Stainless steel A4, HCR	lt	[mm]	46	60	70	85	100	125	٠
Effective length of	Steel zinc plated	If.red	[mm]	35 ¹⁾	40	50	65			
fastener in shear loading with h et,red	Stainless steel A4, HCR	l _{f,red}	[mm]	35 ¹⁾	40	50	65			•
Outside diameter of	fastener	dnom	[mm]	8	10	12	16	20	24	27

¹⁾ Use restricted to anchoring of structural components statically indeterminate

Wedge anchor BZ plus	
Performance Characteristic values for shear loads, BZ plus, cracked and uncracked concrete, static or quasi static action	

Table C6: Characteristic resistance for seismic loading, BZ plus, standard anchorage depth, performance category C1 and C2

Fastener siz	e		M8	M10	M12	M16	M20	
Tension load	ls							
Installation fa	ctor y _{inst}	[-]	1,0					
Steel failure,	Steel zinc plated							
Characteristic	resistance C1 N _{Rk,s,eq,C1}	[kN]	16	27	40	60	86	
Characteristic	resistance C2 NRk,s,eq,C2	[kN]	16	27	40	60	86	
Partial factor yms		[-]	1,	53	1	,5	1,6	
Steel failure,	Stainless steel A4, HCR							
Characteristic	resistance C1 NRk.s.eq.C1	[kN]	16	27	40	64	108	
Characteristic resistance C2 NRk.s,eq,C2		[kN]	16	27	40	64	108	
Partial factor	[-]		1,68					
Pull-out (stee	el zinc plated, stainless stee	A4 and	HCR)					
Characteristic resistance C1 NRK,p.eq,C1		[kN]	5	9	16	25	36	
Characteristic resistance C2 N _{Rk,p,eq,C2}		[kN]	2,3	3,6	10,2	13,8	24,4	
Shear loads								
Steel failure	without lever arm, Steel zi	nc plate	d					
Characteristic	resistance C1 V _{Rk,s,eq,C1}	[kN]	9,3	20	27	44	69	
Characteristic	resistance C2 VRk,s,eq,C2	[kN]	6,7	14	16,2	35,7	55,2	
Partial factor	γMs	[-]		1,	25		1,33	
Steel failure	without lever arm, Stainle	ss steel	A4, HCR					
Characteristic	resistance C1 VRk,s,eq,C1	[kN]	9,3	20	27	44	69	
Characteristic	resistance C2 V _{Rk,s,eq,C2}	[kN]	6,7	14	16,2	35,7	55,2	
Partial factor	γMs	[-]		1,	25		1,4	
Factor for	without filling of αgap annular gap	[-]			0,5			
annular gap	with filling of αgap annular gap	[-]			1,0			

Wedge anchor BZ plus	
Performance Characteristic resistance for seismic loading, BZ plus, standard anchorage depth, performance category C1 and C2	Annex C6

Table C7: Characteristic values for tension and shear load under fire exposure, BZ plus, standard anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Fastener size				M8	M10	M12	M16	M20	M24	M27
Tension load										
Steel failure										
Steel, zinc plate	ed									
R30			1,5	2,6	4,1	7,7	9,4	13,6	17,6	
Characteristic	R60	New	TIANT	1,1	1,9	3,0	5,6	8,2	11,8	15,3
resistance	R90	NRk,s,fi	[kN]	8,0	1,4	2,4	4,4	6,9	10,0	13,0
	R120			0,7	1,2	2,2	4,0	6,3	9,1	11,8
Stainless steel	A4, HCR									
	R30			3,8	6,9	12,7	23,7	33,5	48,2	
Characteristic	R60	N	man	2,9	5,3	9,4	17,6	25,0	35,9	
resistance	R90	NRk,s,fi	[kN]	2,0	3,6	6,1	11,5	16,4	23,6	115
	R120			1,6	2,8	4,5	8,4	12,1	17,4	
Shear load										
Steel failure wit	hout lever an	m								
Steel, zinc plate	ed									
Characteristic resistance	R30			1,6	2,6	4,1	7,7	11	16	20,6
	R60	0.0	0.50	1,5	2,5	3,6	6,8	11	15	19,8
	R90	VRk,s.fi	[kN]	1,2	2,1	3,5	6,5	10	15	19,0
	R120			1,0	2,0	3,4	6,4	10	14	18,6
Stainless steel	A4, HCR									
	R30			3,8	6,9	12,7	23,7	33,5	48,2	
Characteristic	R60		7.17	2,9	5,3	9,4	17,6	25,0	35,9	
resistance	R90	V _{Rk,s,fi}	[kN]	2,0	3,6	6,1	11,5	16,4	23,6	
	R120			1,6	2,8	4,5	8,4	12,1	17,4	
Steel failure wit	th lever arm					-				
Steel, zinc plate	ed									
	R30			1,7	3,3	6,4	16,3	29	50	75
Characteristic	R60	4.00		1,6	3,2	5,6	14	28	48	72
resistance	R90	M ⁰ Rk,s,fi	[Nm]	1,2	2,7	5,4	14	27	47	69
	R120			1,1	2,5	5,3	13	26	46	68
Stainless steel	A4, HCR									
	R30			3,8	9,0	19,7	50,1	88,8	153,5	
Characteristic	R60	1.40	DI-	2,9	6,8	14,6	37,2	66,1	114,3	
resistance	R90	M ⁰ Rk,s,fi	[Nm]	2,1	4,7	9,5	24,2	43,4	75,1	1
	R120			1,6	3,6	7,0	17,8	32,1	55,5	

If pull-out is not decisive, N_{Rk,p} must be replaced by N⁰_{Rk,c} in equation (D.4) and (D.5), FprEN 1992-4.

	MULTINE.			-	
MAN	ao	anc	hor	H /	plus
WCU	uc	anc	1101	2	DIUS

Performance

Characteristic values for tension and shear load under fire exposure, BZ plus, standard anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Table C8: Characteristic values for tension and shear load under fire exposure, BZ plus, reduced anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Fastener size			M8	M10	M12	M16	
Tension load							
Steel failure							
Steel, zinc plated							
	R30			1,5	2,6	4,1	7,7
Characteristic	R60	N	n.n.	1,1	1,9	3,0	5,6
resistance	R90	N _{Rk,s,fi}	[kN]	8,0	1,3	1,9	3,5
	R120			0,6	1,0	1,3	2,5
Stainless steel A4,	, HCR						
	R30			3,2	6,9	12,7	23,7
Characteristic	R60	N	TIAND	2,5	5,3	9,4	17,6
resistance	R90	N _{Rk,s,fi}	[kN]	1,9	3,6	6,1	11,5
4.7.2	R120			1,6	2,8	4,5	8,4
Shear load							
Steel failure witho	ut lever arm						
Steel, zinc plated							
	R30			1,5	2,6	4,1	7,7
Characteristic resistance	R60		n.sn	1,1	1,9	3,0	5,6
	R90	VRk,s,fi	[kN]	0,8	1,3	1,9	3,5
	R120			0,6	1,0	1,3	2,5
Stainless steel A4	, HCR						
	R30		[kN]	3,2	6,9	12,7	23,7
Characteristic	R60			2,5	5,3	9,4	17,6
resistance	R90	VRk,s,fi		1,9	3,6	6,1	11,5
	R120			1,6	2,8	4,5	8,4
Steel failure with le	ever arm						
Steel, zinc plated							
	R30			1,5	3,3	6,4	16,3
Characteristic	R60	4.40	fNI1	1,2	2,5	4,7	11,9
resistance	R90	M ⁰ Rk,s,fi	[Nm]	8,0	1,7	3,0	7,5
	R120			0,6	1,2	2,1	5,3
Stainless steel A4,	HCR						
	R30	== = 1		3,2	8,9	19,7	50,1
Characteristic	R60	A 40		2,6	6,8	14,6	37,2
resistance	R90	M ⁰ _{Rk,s,fi}	[Nm]	2,0	4,7	9,5	24,2
	R120			1,6	3,6	7,0	17,8

If pull-out is not decisive, N_{Rk,p} must be replaced by N⁰_{Rk,c} in equation (D.4) and (D.5), FprEN 1992-4.

Wedge anchor BZ plus

Performance

Characteristic values for tension and shear load under fire exposure, BZ plus, reduced anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Table C9:	Displacements	under tension	load, BZ plus
	D.10 0101011101110		.out, or piece

Fastener size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage depth									
Steel zinc plated									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	24
Displacement	δησ	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	0,9
Displacement	δN=	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	1,4
Tension load in uncracked concrete	N	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	34
Displacement	δησ	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	0,3
Displacement	δN∞	[mm]	0	,8	1,4		8,0		1,4
Displacements under seismic tension lo	ads C2								
Displacements for DLS	δN,eq,(DLS)	[mm]	2,3	4,1	4,9	3,6	5,1		
Displacements for ULS	δN,eq(ULS)	[mm]	8,2	13,8	15,7	9,5	15,2	-	
Stainless steel A4, HCR									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	19,0	
	δησ	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	-
Displacement	δN∞	[mm]	1,2	1,4	1,4	1,4	1,0	1,8	
Tension load in uncracked concrete	N	[kN]	5,8	7,6	11,9	16,7	23,8	33,5	
- District Control of	δηο	[mm]	0,6	0,5	0,7	0,2	0,4	0,5	-
Displacement	δησ	[mm]	1,2	1,0	1,4	0,4	0,8	1,1	
Displacements under seismic tension lo	ads C2								
Displacements for DLS	δN,eq(DLS)	[mm]	2,3	4,1	4,9	3,6	5,1		
Displacements for ULS	δN,eq(ULS)	[mm]	8,2	13,8	15,7	9,5	15,2	1 1	-
Reduced anchorage depth									
Steel zinc plated, stainless steel A4,	HCR								
Tension load in cracked concrete	N	[kN]	2,4	3,6	6,1	9,0			
District	δνο	[mm]	0,8	0,7	0,5	1,0	-51	-1	ž.
Displacement	δ _{N∞}	[mm]	1,2	1,0	0,8	1,1			
Tension load in uncracked concrete	N	[kN]	3,7	4,3	8,5	12,6			
	δησ	[mm]	0,1	0,2	0,2	0,2	·		-
Displacement	δν∞	[mm]	0.7	0,7	0,7	0,7			

Modao	anchor	27 n	luc
wedde	anchor	D4 D	ius

Performance

Displacements under tension load

Table C10:	Displacements	under shear load.	. BZ plus
------------	---------------	-------------------	-----------

Fastener size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage depth	1								
Steel zinc plated									
Shear load in cracked and uncracked concrete	V	[kN]	6,9	11,4	17,1	31,4	36,8	64,9	96,8
Dianlacament	δγο	[mm]	2,0	3,2	3,6	3,5	1,8	3,5	3,6
Displacement	δv∞	[mm]	3,0	4,7	5,5	5,3	2,7	5,3	5,4
Displacements under seismi	c shear loa	ds C2							
Displacements for DLS	δv,eq(DLS)	[mm]	3,0	2,7	3,5	4,3	4,7		
Displacements for ULS	$\delta_{V,eq(ULS)}$	[mm]	5,9	5,3	9,5	9,6	10,1		*
Stainless steel A4, HCR									
Shear load in cracked and uncracked concrete	٧	[kN]	7,3	11,4	17,1	31,4	43,8	70,6	-
Displacement	δνο	[mm]	1,9	2,4	4,0	4,3	2,9	2,8	
Displacement	δv∞	[mm]	2,9	3,6	5,9	6,4	4,3	4,2	
Displacements under seismi	c shear loa	ds C2							
Displacements for DLS	$\delta_{V,eq(DLS)}$	[mm]	3,0	2,7	3,5	4,3	4,7		
Displacements for ULS	$\delta_{\text{V,eq(ULS)}}$	[mm]	5,9	5,3	9,5	9,6	10,1		
Reduced anchorage depth	1								
Steel zinc plated									
Shear load in cracked and uncracked concrete	٧	[kN]	6,9	11,4	17,1	31,4			
Displacement	δνο	[mm]	2,0	3,2	3,6	3,5	1-2	150	,211
Displacement	δν∞	[mm]	3,0	4,7	5,5	5,3			
Stainless steel A4, HCR									
Shear load in cracked and uncracked concrete	٧	[kN]	7,3	11,4	17,1	31,4			
Displacement	δνο	[mm]	1,9	2,4	4,0	4,3	*	-	-
Displacement	δν∞	[mm]	2,9	3,6	5,9	6,4			

Wedge	anchor	R7 n	lue
Weduce	anchion	D2 D	เนอ

Performance

Displacements under shear load

Table C11: Characteristic values for tension loads, BZ-IG, cracked concrete, static and quasi-static action

Fastener size			M6	M8	M10	M12
Installation factor	γinst	[-]			,2	
Steel failure						
Characteristic resistance, steel zinc plated	N _{Rk,s}	[kN]	16,1	22,6	26,0	56,6
Partial factor	γMs	[-]		1	,5	
Characteristic resistance, stainless steel A4, HCR	N _{Rk,s}	[kN]	14,1	25,6	35,8	59,0
	γMs	[-]		1,	87	
Pull-out failure						
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	5	9	12	20
Increasing factor for N _{Rk,p}	ψс	[-]		$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{1}{2}\right)^{0.5}$	
Concrete cone failure						
Effective anchorage depth	her	[mm]	45	58	65	80
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]		7	,7	

Wedge anchor BZ-IG

Performance

Characteristic values for tension loads, BZ-IG, cracked concrete, static and quasi-static action

Table C12: Characteristic values for tension loads, BZ-IG, uncracked concrete, static and quasi-static action

Fastener size			M6	M8	M10	M12
Installation factor	Yinst	[-]		1	,2	
Steel failure		LII				
Characteristic resistance, steel zinc plated	N _{Rk,s}	[kN]	16,1	22,6	26,0	56,6
Partial factor	γMs	[-]		1	,5	
Characteristic resistance, stainless steel A4, HCR	N _{Rk,s}	[kN]	14,1	25,6	35,8	59,0
Partial factor	γMs	[-]		1,	87	
Pull-out						
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	12	16	20	30
Splitting (the higher resistance of Case 1 and	d Case 2 may	be applied)			
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160
Case 1						
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	9	12	16	25
Edge distance	C _{cr,sp}	[mm]		1,5	h _{ef}	
Case 2						
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	20	30
Edge distance	C _{cr,sp}	[mm]		2,5	h _{ef}	
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψс	[-]		$\left(\frac{f_{ck}}{20}\right)$	0,5	
Concrete cone failure						
Effective anchorage depth	her	[mm]	45	58	65	80
Factor for uncracked concrete	K ₁ = K _{ucr,N}	[-]		11	1,0	

Wed	ne :	anch	or F	(Z-1G

Performance

Characteristic values for tension loads, BZ-IG, uncracked concrete, static and quasi-static action

Table C13: Characteristic values for shear loads, BZ-IG, cracked and uncracked concrete, static and quasi-static action

Fastener size			M6	M8	M10	M12
Installation factor	Yinst	[-]		1	,0	
BZ-IG, steel zinc plated						
Steel failure without lever arm, Pre-setting	installat	ion				
Characteristic resistance	V ⁰ Rk,s	[kN]	5,8	6,9	10,4	25,8
Steel failure without lever arm, Through-se	etting ins	tallation				
Characteristic resistance	V ⁰ Rk,s	[kN]	5,1	7,6	10,8	24,3
Steel failure with lever arm, Pre-setting ins	tallation					
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	12,2	30,0	59,8	104,6
Steel failure with lever arm, Through-setting	ng install	ation				
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	36,0	53,2	76,0	207
Partial factor for V _{Rk,s} and M ⁰ _{Rk,s}	γMs	[-]		1	,25	
Ductility factor	k ₇	[-]		1	,0	
BZ-IG, stainless steel A4, HCR						
Steel failure without lever arm, Pre-setting	installat	ion				
Characteristic resistance	$V^0_{Rk,s}$	[kN]	5,7	9,2	10,6	23,6
Partial factor	γMs	[-]		1	,25	
Steel failure without lever arm, Through-se	etting ins	tallation				
Characteristic resistance	V ⁰ Rk,s	[kN]	7,3	7,6	9,7	29,6
Partial factor	γMs	[-]		1.	,25	
Steel failure with lever arm, Pre-setting ins	tallation					
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	10,7	26,2	52,3	91,6
Partial factor	γMs	[-]		1	,56	
Steel failure with lever arm, Through-setting	ng install	ation				
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	28,2	44,3	69,9	191,2
Partial factor	γMs	[-]		1	,25	
Ductility factor	k ₇	[-]		1.1	,0	
Concrete pry-out failure						
Pry-out factor	k ₈	[-]	1,5	1,5	2,0	2,0
Concrete edge failure						
Effective length of fastener in shear loading	lt	[mm]	45	58	65	80
Effective diameter of fastener	dnom	[mm]	8	10	12	16

Wedge ancho	r BZ-IG
-------------	---------

Performance

Characteristic values for shear loads, BZ-IG, cracked and uncracked concrete, static and quasi-static action

Table C14: Characteristic values for tension and shear load under fire exposure, BZ-IG, cracked and uncracked concrete C20/25 to C50/60

Fastener size			M6	M8	M10	M12
Tension load						
Steel failure						
Steel zinc plated						
	R30		0,7	1,4	2,5	3,7
Characteristic	R60	TIANT	0,6	1,2	2,0	2,9
resistance	R90	Rk,s,fi [kN]	0,5	0,9	1,5	2,2
	R120		0,4	0,8	1,3	1,8
Stainless steel A	4, HCR					
	R30		2,9	5,4	8,7	12,6
Characteristic	R60	D-KIT	1,9	3,8	6,3	9,2
resistance	R90	Rk,s,li [KN]	1,0	2,1	3,9	5,7
	R120		0,5	1,3	2,7	4,0
Shear load						
Steel failure with	nout lever arm					
Steel zinc plated	Į.					
	R30		0,7	1,4	2,5	3,7
Characteristic	R60	ak,s,fi [kN]	0,6	1,2	2,0	2,9
resistance	R90	Rk,s,fi [KIV]	0,5	0,9	1,5	2,2
	R120		0,4	8,0	1,3	1,8
Stainless steel A	4, HCR					
0	R30		2,9	5,4	8,7	12,6
Characteristic	R60	Rk,s,fi [kN]	1,9	3,8	6,3	9,2
resistance	R90	Rk,s,fi [KN]	1,0	2,1	3,9	5,7
	R120		0,5	1,3	2,7	4,0
Steel failure with	lever arm					
Steel zinc plated						
	R30		0,5	1,4	3,3	5,7
Characteristic	R60	Rk,s,fi [Nm]	0,4	1,2	2,6	4,6
resistance	R90	Rk,s,fi [Nm]	0,4	0,9	2,0	3,4
	R120		0,3	0,8	1,6	2,8
Stainless steel A	4, HCR					
	R30		2,2	5,5	11,2	19,6
Characteristic	R60 M ⁰	Rk,s,fi [Nm]	1,5	3,9	8,1	14,3
resistance	R90	MK,S,II [INIII]	0,7	2,2	5,1	8,9
	R120		0,4	1,3	3,5	6,2

Wedge anchor BZ-IG

Performance

Characteristic values for **tension** and **shear loads** under **fire exposure**, **BZ-IG** cracked and uncracked concrete C20/25 to C50/60

Table C15: Displacements under tension load, BZ-IG

Fastener size			M6	M8	M10	M12
Tension load in cracked concrete	N	[kN]	2,0	3,6	4,8	8,0
Displacements	δησ	[mm]	0,6	0,6	0,8	1,0
Displacements	δN∞	[mm]	0,8	0,8	1,2	1,4
Tension load in uncracked concrete	N	[kN]	4,8	6,4	8,0	12,0
B ALL STATE OF THE STATE OF TH	δηρ	[mm]	0,4	0,5	0,7	8,0
Displacements	δν∞	[mm]	8,0	8,0	1,2	1,4

Table C16: Displacements under shear load, BZ-IG

Fastener size			M6	M8	M10	M12
Shear load in cracked and uncracked concrete	٧	[kN]	4,2	5,3	6,2	16,9
Displacements	δνα	[mm]	2,8	2,9	2,5	3,6
	δν∞	[mm]	4,2	4,4	3,8	5,3

Wedge anchor BZ-IG

Performance

Displacements under tension load and under shear load BZ-IG