

OBO Bettermann GmbH & Co. KG · Postfach 1120 · D-58694 Menden

OBO Bettermann GmbH & Co. KG Postfach 1120 · D-58694 Menden Hüingser Ring 52 · D-58710 Menden

Tel. 02373/89-0 Fax 02373/89-1238 E-Mail: info@obo.de www.obo.de

Brandschutztechnische Stellungnahme

05/160215-01 vom 15.02.2016

Gegenstand:

Beurteilung der mechanischen Standsicherheit des im Bereich zwischen den Geschossdecken und brandschutztechnisch ausgelegten Unterdecken installierten Kabelträgersystems mit Kabelrinnen Typ SKS 6xx und Montageschienen bei einer Brandbeanspruchung von 30 Minuten

Ersteller:

Dipl.-Ing. Hans-Theo Fabry

Leitung PM / F+E

Business Unit Brandschutzsysteme OBO Bettermann GmbH & Co. KG

Diese brandschutztechnische Stellungnahme besteht inkl. Deckblatt aus 7 Seiten und 5 Anlagen

Seite 2 der brandschutztechnischen Stellungnahme 05/160215-01 vom 15.02.2016

1. Beurteilungsgrundlagen

Folgende Unterlagen wurden als Beurteilungsgrundlage berücksichtigt:

- Musterbauordnung (MBO), Fassung November 2002
- Muster-Richtlinie über brandschutztechnische Anforderungen an Leitungsanlagen (Muster-Leitungsanlagen-Richtlinie MLAR), Fassung vom 17.11.2005
- Diverse allgemeine bauaufsichtliche Prüfzeugnisse für Unterdeckenkonstruktionen
- Prüfbericht Nr. 3739/8743-Mu vom 06.04.2004 der Materialprüfanstalt (MPA) für das Bauwesen in Braunschweig, ausgestellt auf OBO Bettermann GmbH & Co. KG
- Gutachterliche Stellungnahme Nr. 3059/3644-AR/Mu- vom 16.04.2004 der Materialprüfanstalt (MPA) für das Bauwesen in Braunschweig, ausgestellt auf OBO Bettermann GmbH & Co. KG
- Prüfung von Kabelrinnen Typ SKSM 6xx FS in den Breiten 100 mm bis 600 mm im Prüfofen des KABELWERK Eupen, Malmedyer Straße 9 in B-4700 Eupen, im Dezember 2013

2. Brandschutztechnische Anforderungen

Gemäß Abschnitt 3.1.1 der Muster-Richtlinie über brandschutztechnische Anforderungen an Leitungsanlagen (MLAR) dürfen Leitungsanlagen in Flucht- und Rettungswegen nur dann installiert werden, wenn eine Nutzung als Rettungsweg im Brandfall ausreichend lang möglich ist.

Eine Möglichkeit zur Sicherstellung dieser Anforderung ist die Installation der Leitungsanlagen oberhalb von brandschutztechnisch klassifizierten Unterdecken. Diese Unterdecken müssen sowohl bei Brandbeanspruchung von oben als auch von unten in die Feuerwiderstandsklasse F30 eingestuft sein. Eine spezielle brandschutztechnische Anforderung an die oberhalb der Unterdecken installierten Kabel und Leitungen besteht dabei nicht. Im Abschnitt 3.1.1 der MLAR und in den bauaufsichtlichen Prüfzeugnissen der Unterdecken ist folgende Anforderung hinsichtlich der ausgeführten Installationen festgelegt.

Die Unterdeckenkonstruktion darf während einer Brandbeanspruchung nur durch ihr Eigengewicht belastet werden.

Speziell für die Installation von Kabelträgersystemen ergeben sich somit folgende Anforderungen für den Brandfall:

- Das Kabelträgersystem darf nicht auf die Unterdeckenkonstruktion fallen.
- Die Verbindung der einzelnen Kabelträgerlängen darf sich nicht lösen.
- Die Verformung des Kabelträgersystems muss so gering bleiben, dass dieses sich nicht auf der Unterdeckenkonstruktion abstützt.

Zusätzlich sind folgende Brandschutzanforderungen von einem Kabelträgersystem einzuhalten:

- Die in Tabelle 109 der DIN 4102-4 (Ausgabe vom März 1994) angegebene maximal zulässige Zugspannung von 9 N/mm² für ungeschützte Stahlteile bei einer Brandbelastung von 30 Minuten ist einzuhalten.
- Zur Befestigung des Kabelträgersystems unter der Geschossdecke sind brandschutztechnisch nachgewiesene Befestigungsmittel zu verwenden.
 Die einzusetzenden Dübel müssen den Angaben gültiger bauaufsichtlicher Zulassungen (abZ) des Deutschen Instituts für Bautechnik bzw. einer europäisch technischen Zulassung / Bewertung (ETA) entsprechen.

© OBO BETTERMANN - Mat.-Nr. 10998144 - 11/09

Seite 3 der brandschutztechnischen Stellungnahme 05/160215-01 vom 15.02.2016

Die Eignung des Dübels für den Befestigungsuntergrund muss über die Zulassung / Bewertung nachgewiesen sein. Die Dübel sind entsprechend den Vorgaben aus der jeweiligen Zulassung / Bewertung zu montieren.

Sind in der Zulassung / Bewertung keine Angaben zum Brandverhalten des Dübels enthalten, kann alternativ die Eignung des Dübels durch einen entsprechenden brandschutztechnischen Nachweis, z.B. durch Prüfung einer anerkannten Prüfstelle, nachgewiesen werden.

3. Kabelträgersystem mit Kabelrinnen Typ SKS 6xx und Auslegern Typ AW30Fxx

3.1. Beschreibung des Kabelträgersystems

Das Kabelträgersystem besteht aus Kabelrinnen Typ SKS 6xx und aus den im Abstand von maximal 1,5 m angeordneten U-Hängestielen Typ US 5 K xx und angeschraubten Auslegern Typ AW30Fxx. Die Ausleger sind mittels an der Auslegerspitze verschraubten Gewindestangen der Abmessung M12 zusätzlich zur Decke gesichert.

Die Stoßstellenverbindung zweier Rinnenstücke erfolgt mittels Längsverbinder in den Seitenholmen der Rinnenenden sowie mit einer zusätzlichen Stoßstellenleiste im Bodenbereich der Rinnenenden. Die Verbinder und die Stoßstellenleiste sind mittels Flachrundschrauben der Abmessung M6 mit den Rinnenenden verschraubt.

Details zum geprüften Kabelträgersystem können dem Prüfbericht Nr. 3739/8743-Mu vom 06.04.2004 der Materialprüfanstalt (MPA) für das Bauwesen in Braunschweig entnommen werden.

3.2. Prüfung des Kabelträgersystems hinsichtlich der mechanischen Standsicherheit

Ziel der durchgeführten Prüfungen war es, Aussagen über das mechanische Verhalten und zur Standsicherheit des Kabelträgersystems bei einer Brandbeanspruchung zu erhalten. Stellvertretend für die verschiedenen Breiten der Kabelrinne Typ SKS 6xx wurden nur die Breiten 100 mm und 600 mm geprüft.

Zur Simulation einer Vollbelegung der Kabelrinnen mit Kabeln wurden Stahlketten in diese eingelegt. Die Rinnen wurden während der Prüfung mit folgenden mechanischen Belastungen beansprucht:

Тур	Rinnenbreite [mm]	Kabellast [kg/m]	
SKS 610	100	15	
SKS 660	600	90	

Tabelle 1:

Gewichtsbelastung der Kabelrinnen Typ SKS 6xx

Die einzelnen Abhängepunkte wurden in einem Abstand von 1,5 m angeordnet, so dass sich zwei komplette Felder im Rinnenverlauf ergaben. Mittig in einem dieser Felder wurde eine Stoßstellenverbindung zweier Rinnenstücke angeordnet.

In der Feldmitte zwischen den Abhängepunkten und in der Mitte des Rinnenbodens wurde die Durchbiegung der Kabelrinnen im Vergleich zum Versuchsbeginn gemessen.

Die Aufheizung des Prüfofens erfolgte entsprechend der Einheits-Temperatur-Zeitkurve (ETK) der DIN 4102-2 über eine Dauer von 30 Minuten. Nach dieser Zeitdauer erreichte der

Seite 4 der brandschutztechnischen Stellungnahme 05/160215-01 vom 15.02.2016

Mittelwert der Brandraumtemperatur die gemäß dem Verlauf der ETK geforderte Temperaturerhöhung von 822 K.

Die ausführliche Beschreibung der durchgeführten Prüfung ist dem Prüfbericht Nr. 3739/8743-Mu vom 06.04.2004 der Materialprüfanstalt (MPA) für das Bauwesen in Braunschweig zu entnehmen.

Basierend auf diesem Prüfbericht wurde die Gutachterliche Stellungnahme Nr. 3059/3644-AR/Mu- durch die Materialprüfanstalt (MPA) für das Bauwesen in Braunschweig ausgestellt. Diese beinhaltet die Aussage, dass durch die durchgeführte Prüfung mit den Rinnenbreiten 100 mm und 600 mm der Nachweis bezüglich der mechanischen Standsicherheit für einen Bereich der Rinnenbreiten von 100 mm – 600 mm erfolgt ist.

4. Kabelträgersystem mit Kabelrinnen Typ SKSM 6xx und Montageschienen

4.1. Beschreibung des Kabelträgersystems

Das Kabelträgersystem mit den Kabelrinnen Typ SKSM 6xx (B = 100-600 mm) besteht aus Montageschienen die mittels beidseitig angeordneten Gewindestangen der Abmessung M12 im Abstand von maximal 1,5 m von der Decke abgehängt sind. In Abhängigkeit von der Rinnenbreite kommen Montageschienen Typ MS 41 L 2 und Typ MS 41 L zum Einsatz.

Auf eine Beschreibung der geprüften Kabelrinnen wird an dieser Stelle verzichtet, da diese bei der abschließenden brandschutztechnischen Bewertung unerheblich sind.

Details zum Kabelträgersystem können der brandschutztechnischen Stellungnahme Nr. 05/160122-01 vom 22.01.2016 der OBO Bettermann GmbH & Co. KG entnommen werden.

4.2. Prüfung des Kabelträgersystems hinsichtlich der mechanischen Standsicherheit

Ziel der durchgeführten Prüfungen war es, Aussagen über das mechanische Verhalten und zur Standsicherheit des Kabelträgersystems bei einer Brandbeanspruchung zu erhalten.

Zur Simulation einer Vollbelegung der Kabelrinnen mit Kabeln wurden Stahlketten in diese eingelegt. Die Rinnen wurden während der Prüfung mit folgenden mechanischen Belastungen beansprucht:

Тур	Rinnenbreite [mm]	Kabellast [kg/m]		
SKSM 610	100	15		
SKSM 620	200	30		
SKSM 630	300	45		
SKSM 640	400	60		
SKSM 650	500	75		
SKSM 660	600	90		

Tabelle 2:

Gewichtsbelastung der Kabelrinnen Typ SKSM 6xx

Seite 5 der brandschutztechnischen Stellungnahme 05/160215-01 vom 15.02.2016

Die einzelnen Abhängepunkte wurden in einem Abstand von 1,5 m angeordnet, so dass sich zwei komplette Felder im Rinnenverlauf ergaben. Mittig in einem dieser Felder wurde eine Stoßstellenverbindung zweier Rinnenstücke angeordnet.

In der Feldmitte zwischen den Abhängepunkten und in der Mitte des Rinnenbodens wurde die Durchbiegung der Kabelrinnen im Vergleich zum Versuchsbeginn gemessen.

Da das Verformungsverhalten des Kabelträgersystems mit den Kabelrinnen direkt abhängig von der Temperatur ist, erfolgte die Aufheizung des Prüfofens in Anlehnung an die Einheits-Temperatur-Zeitkurve (ETK) gemäß der DIN 4102-2. Die Aufheizung des Prüfofens erfolgte so lange, bis der Mittelwert der Brandraumtemperatur den vorgegebenen Wert zur Temperaturerhöhung bei einer 30-minütigen Aufheizung gemäß der ETK (Temperaturerhöhung 822 K) erreichte.

Details zum geprüften Kabelträgersystem können der brandschutztechnischen Stellungnahme Nr. 05/160122-01 vom 22.01.2016 der OBO Bettermann GmbH & Co. KG entnommen werden.

5. Brandschutztechnische Bewertung

Aus den in den genannten Dokumenten dokumentierten Prüfergebnissen kann abgeleitet werden, dass unter Berücksichtigung bestimmter Punkte eine Kombination der mit einem Kabelträgersystem, bestehend aus U-Hängestielen und angeschraubten Auslegern, geprüften Kabelrinnen Typ SKS 6xx mit dem Kabelträgersystem bestehend aus Montageschienen und beidseitig angeordneten Gewindestangen möglich ist.

5.1. Mechanische Standsicherheit

Das Kabelträgersystem mit Montageschienen und beidseitig angeordneten Gewindestangen hat durch die durchgeführte Prüfung bewiesen, dass es in Kombination mit den in Tabelle 2 angegebenen Kabellasten für Rinnenbreiten von 100 – 600 mm und einem Stützabstand von 1,5 m mechanisch nicht versagt.

Bei gleichen Kabellasten für die Rinnenbreiten 100 mm und 600 mm (siehe Tabelle 1) und bei gleichem Stützabstand von 1,5 m hat die Kabelrinne Typ SKS 6xx bewiesen, dass auch sie mechanisch nicht versagt. Zudem wurde nachgewiesen, dass die Verbindung der einzelnen Rinnenstücke sich nicht löst. Detaillierte Informationen dazu sind der Gutachterlichen Stellungnahme Nr. 3059/3644-AR/Mu- zu entnehmen.

Durch die Vergleichbarkeit der maximalen mechanischen Parameter die bei den Prüfungen berücksichtigt wurden ist es möglich, auch das mechanische Verhalten eines kombinierten Kabelträgersystems, bestehend Montageschienen und beidseitig angeordneten Gewindestangen und montierten Kabelrinnen Typ SKS 6xx, positiv zu beurteilen.

Durch Berücksichtigung der maximal zulässigen Zugspannung von 9 N/mm² für ungeschützte Stahlteile bei einer Brandbelastung von 30 Minuten ist auch der Nachweis bezüglich der mechanischen Standsicherheit für eine 2-lagige Montagevariante gegeben.

Grundsätzlich sind die besonderen Anforderungen hinsichtlich der Verwendung geeigneter Dübel der Abmessung M12 zu beachten (siehe Abschnitt 2).

Das Kabelträgersystem (siehe Anlagen 1 – 3) als Kombination aus den durchgeführten Prüfungen hat somit den Nachweis erbracht, dass bei einer Brandbelastung von 30 Minuten gemäß der DIN 4102 die mechanische Standsicherheit gegeben ist.

© OBO BETTERMANN · Mat.-Nr. 10998144 · 11/09

Seite 6 der brandschutztechnischen Stellungnahme 05/160215-01 vom 15.02.2016

5.2. Mindestabstände zur Unterdecke

An Hand der durchgeführten Prüfung des Kabelträgersystems mit Kabelrinnen Typ SKS 6xx wird erkennbar, dass das Verformungsverhalten der geprüften Ausleger Typ AW30Fxx als Auflage für die Kabelrinnen nahezu keinen Einfluss auf das Verformungsverhalten der Kabelrinnen hat (siehe Bild 1).

Das gleiche trifft auch zu auf das Verformungsverhalten der Montageschienen zu (siehe Bild 2). Die Montageschienen haben auch nahezu keinen Einfluss auf das Verformungsverhalten der Kabelrinnen.

Bild 1: Ausleger Typ AW30Fxx

Bild 2: Montageschiene Typ MS 41 L

Damit kann festgestellt werden, das sich das Verformungsverhalten der Kabelrinnen Typ SKS 6xx nicht ändern wird, wenn diese anstatt auf Auslegern Typ AW30Fxx auf Montageschienen Typ MS 41 L 2 und Typ MS 41 L installiert werden. Somit sind die für die Kabelrinnen Typ SKS 6xx in der Gutachterlichen Stellungnahme aufgeführten Werte bezüglich des Mindestabstandes zur Unterdecke auch für diese kombinierte Installationsweise zu berücksichtigen.

Bei Einhaltung der in Tabelle 3 angegebenen Mindestabstände des Kabelträgersystems zur Unterdecke ist sichergestellt, dass sich das Kabelträgersystem und die belasteten Kabelrinnen bei einer Brandbelastung von 30 Minuten nicht auf der Unterdecke abstützen.

Stützweite	[mm]	S ≤ 1500					
Abhängehöhe	[mm]	H ≤ 1000					
Abstand der Gewindestangen zu Unterdecke	ır [mm]			d≥	20		
Rinnenbreite	[mm]	B = 100	B = 200	B = 300	B = 400	B = 500	B = 600
Kabellast	[kg/m]	≤ 15	≤ 30	≤ 45	≤ 60	≤ 75	≤ 90
Abstand Kabelrinne Unterdecke	zur [mm]	D ≥ 35	D ≥ 65	D ≥ 95	D ≥ 130	D ≥ 160	D ≥ 190

Tabelle 3:

Mindestabstand des Kabelträgersystems zur Unterdecke (siehe auch Anlagen 4 – 5)

Seite 7 der brandschutztechnischen Stellungnahme 05/160215-01 vom 15.02.2016

6. Zusammenfassung

Durch die Kombination der mit einem Kabelträgersystem, bestehend aus U-Hängestielen und Auslegern Typ AW30Fxx, als Deckenmontage geprüften Kabelrinnen Typ SKS 6xx mit einem geprüften Kabelträgersystem aus Montageschienen und beidseitig angeordneten Gewindestangen ist sichergestellt, dass die Unterdecke bei einer Brandbelastung von 30 Minuten gemäß der DIN 4102 entsprechend den bestehenden Forderungen (siehe Abschnitt 2) nur durch ihr Eigengewicht belastet wird.

Die in Tabelle 3 zusammengefassten Montageparameter und die angegebenen Mindestabstände des Kabelträgersystems zu Unterdecken sind dabei einzuhalten.

Die konstruktive Ausführung des Kabelträgersystems muss entsprechend den Anlagen 1 - 3 erfolgen.

7. Besondere Hinweise

Diese brandschutztechnische Stellungnahme gilt nur dann, wenn

- das Kabelträgersystem an Geschossdecken aus Beton / Stahlbeton gemäß der DIN 1045 oder aus Porenbeton gemäß der DIN 4223 befestigt wird,
- für die Geschossdecken ein Brandschutznachweis für mindestens 30 Minuten (Feuerwiderstandsklasse mindestens F30) vorliegt,
- brandschutztechnisch geprüfte Dübel der Abmessung M12 zur Befestigung des Kabelträgersystems verwendet werden.

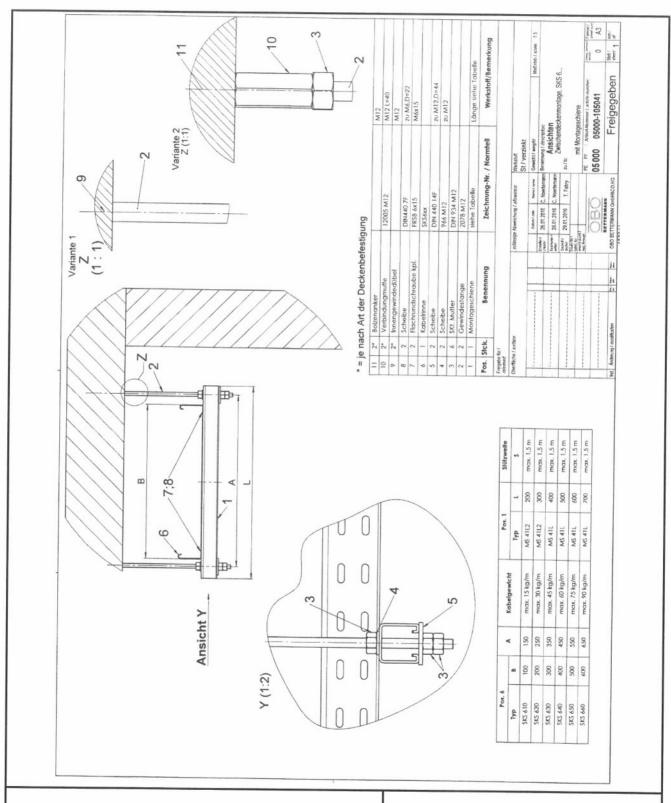
Eine Übertragbarkeit dieser Stellungnahme auf andere Kabelträgersysteme ist nicht möglich.

080

Diese brandschutztechnische Stellungnahme kann als Nachweis für die mechanische Standsicherheit des Kabelträgersystems im Hinblick auf die Forderungen der Muster-Richtlinie über brandschutztechnische Anforderungen an Leitungsanlagen (MLAR) und den allgemeinen bauaufsichtliche Prüfzeugnissen der Unterdecken verwendet werden.

Menden, den 15.02.2016

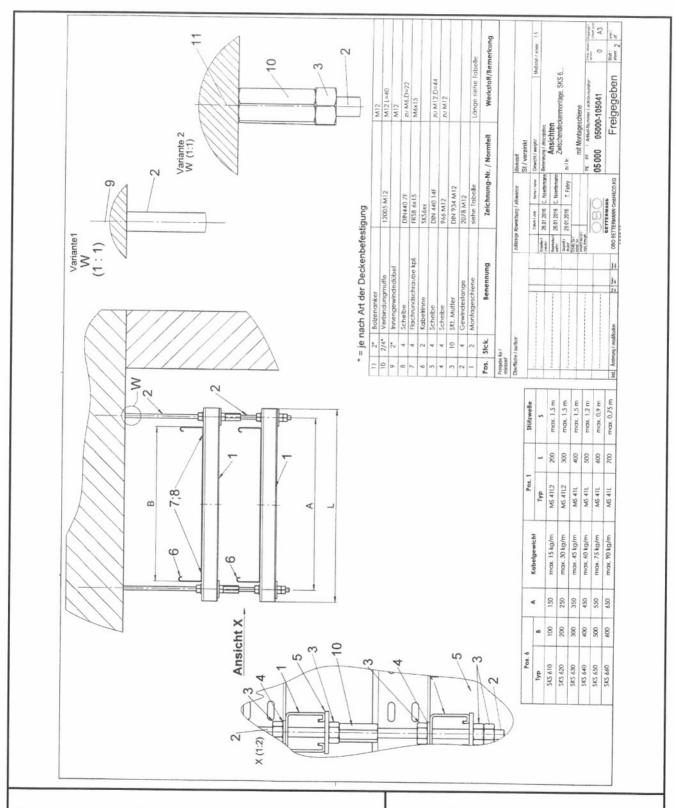
Dipl.-Ing. (FA) Stefan Ring


Leitung Business Unit Brandschutzsysteme

Dipl.-Ing. Hans-Theo Fabry

Leitung PM / F+E

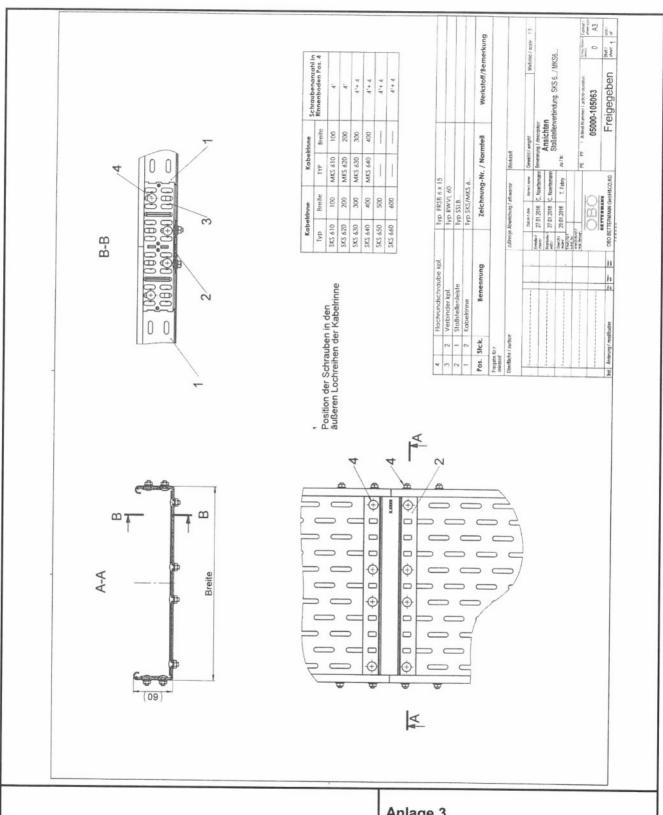
Business Unit Brandschutzsysteme



Konstruktiver Aufbau des Kabelträgersystems 1-lagige Anordnung

Anlage 1

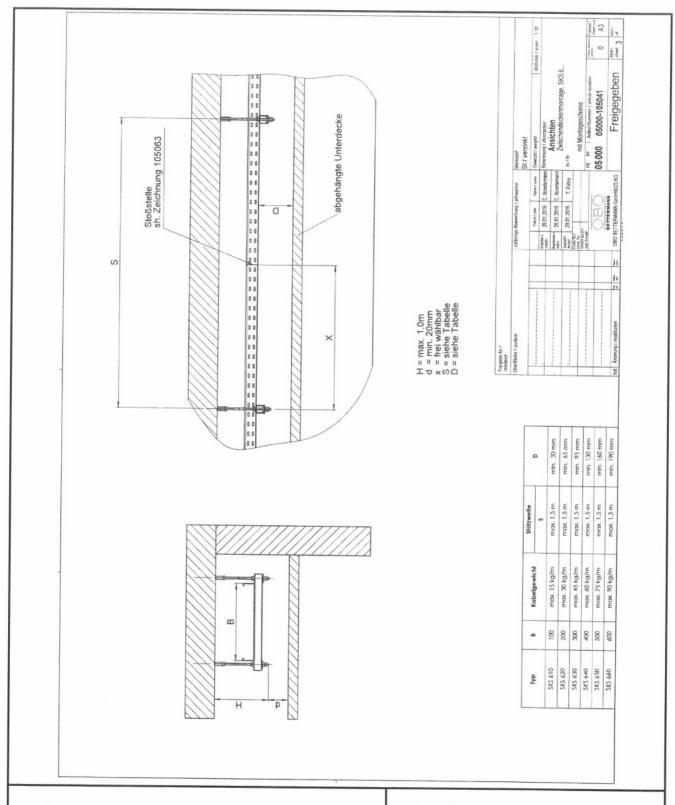
zur brandschutztechnischen Stellungnahme Nr. 05/160215-01 vom 15.02.2016



Konstruktiver Aufbau des Kabelträgersystems 2-lagige Anordnung

Anlage 2

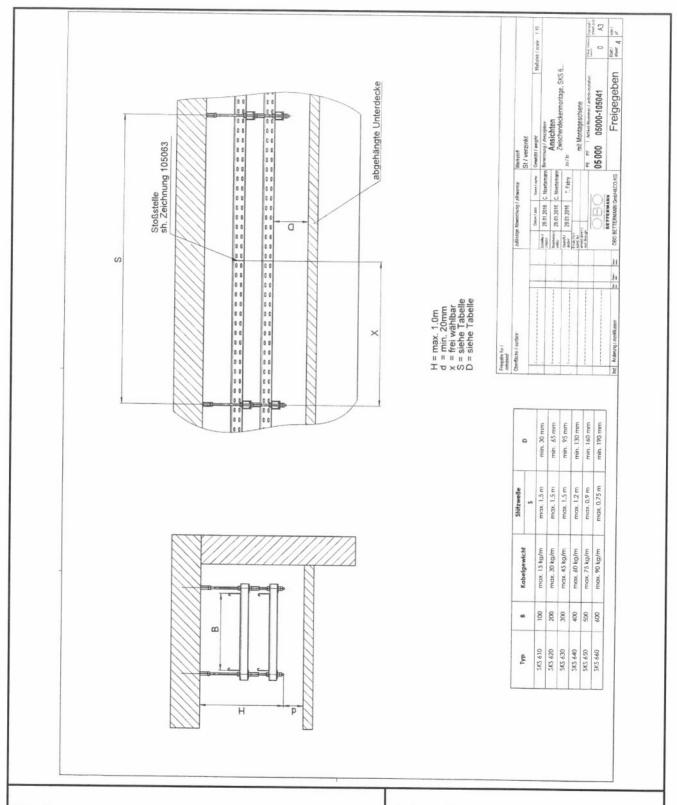
zur brandschutztechnischen Stellungnahme Nr. 05/160215-01 vom 15.02.2016



Stoßstellenverbindung der Kabelrinne

Anlage 3

zur brandschutztechnischen Stellungnahme Nr. 05/160215-01 vom 15.02.2016



Mindestabstände zur Brandschutzdecke 1-lagige Anordnung

Anlage 4

zur brandschutztechnischen Stellungnahme Nr. 05/160215-01 vom 15.02.2016

Mindestabstände zur Brandschutzdecke 2-lagige Anordnung

Anlage 5

zur brandschutztechnischen Stellungnahme Nr. 05/160215-01 vom 15.02.2016

Herstellererklärung

Gegenstand: Zwischendeckenmontage

Umstellung der Typ-Bezeichnungen

von Profilschienen

Ersteller: H.-T. Fabry

Unsere Zeichen: 2016/05/99

Datum: 11.03.2016 OBO BETTERMANN GmbH & Co. KG Postfach 1120 • D-58694 Menden Hüingser Ring 52 • D-58710 Menden

Tel. 0 23 73 / 89-0 Fax 0 23 73 / 89-1238 E-Mail: info@obo.de www.obo.de

Zur besseren / einfacheren Unterscheidung von Profilschienen wurden die Typ-Bezeichnungen der Profilschienen vollständig überarbeitet.

In den folgenden brandschutztechnischen Stellungnahmen der OBO Bettermann GmbH & Co. KG bezüglich Verlegesysteme für die Montage oberhalb abgehängter Brandschutzdecken sind auf den jeweiligen Anlagezeichnungen Profilschienen mit aufgeführt:

- 05/130301-01 vom 01.03.2013 zur Kabelrinne Typ RKSM 6xx
- 05/130301-03 vom 25.01.2016 zur Kabelrinne Typ MKSM 6xx
- 05/160122-01 vom 22.01.2016 zur Kabelrinne Typ SKSM 6xx
- 05/160201-01 vom 01.02.2016 zur Kabelrinne Typ MKS 6xx
- 05/160215-01 vom 15.02.2016 zur Kabelrinne Typ SKS 6xx
- 05/130301-05 vom 01.03.2013 zur Gitterrinne Typ GRM 55 xxx

Durch die Umstellung der Typ-Bezeichnungen entstehen allerdings Abweichungen zwischen den neuen Angaben und den Angaben zu den Profilschienen wie sie momentan in den jeweiligen Stellungnahmen enthalten sind.

Folgende Profilschienen sind von der Umstellung im Hinblick auf die genannten Stellungnahmen betroffen:

Typ-Bezeichnung

Bisher		NEU
MS21L	\rightarrow	MS4121P
MS41L2	\rightarrow	MSL4141P
MS41L	\rightarrow	MS4141P

Es wird bestätigt, dass mit der Umstellung der Typ-Bezeichnungen keinerlei technische Veränderungen an den Profilschienen vorgenommen wurden. Die Umstellung hat somit keine Auswirkungen auf die in den aufgeführten Stellungnahmen angegebenen Montageparameter der verschiedenen Verlegesysteme.

Dipl.-Ing. (FH) Stefan Ring

Leiter Business Unit Brandschutzsysteme

Dipl.-Ing. Hans-Theo Fabry

Leiter PM / F+E

Business Unit Brandschutzsysteme